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Foreword

Systems biology has been called many things by many people. Rather than making
another attempt at an all-encompassing definition, it may be better to take an historical
perspective. Back at the dawn of time there was molecular biology, whose goal was to
identify individual genes. With a gene in hand, one then searched upstream and down-
stream for other genes that acted on it or that it targeted. This led to the description of
linear pathways with little arrows between each of the genes. Then came genomics with
its high-throughput technologies to determine the expression of all genes, proteins,
metabolites, etc. The output was usually a long list of cellular components ordered by
expression level or some other metric. These were parsed for meaning based on where
something was found on the list.

What systems biology has brought that is new and different is an emphasis on finding
the connections among the parts. From these connections, the hope is that new
properties will be identified that were not apparent from just staring at the list of
parts. These are called ‘‘emergent properties.’’ But systems biology does not stop
there. After the connections are found and networks begin to emerge, the next step is
to characterize the dynamic properties of these networks. Accomplishing this requires
perturbing the system and then determining how the system responds. In biology,
perturbations can take the form of external stimuli such as sunlight or withholding a
nutrient. They can also be at the level of mutations that alter gene function or
expression.

A distinguishing feature of systems biology is the integration of quantitative
analytical and modeling approaches. In the days of molecular biology, the view of
quantitative analysis was, ‘‘If you have to use statistics, it means you need to do another
experiment.’’ With the advent of genomics, most scientists realized that they needed
help to make sense of the masses of data. Nevertheless, the general approach was that
of a ‘‘hand-off ’’ – the experimental biologist would find someone with quantitative
expertise to ‘‘analyze my data.’’ When the analysis was completed it would be handed
back to the biologist and that was the end of the interaction. The complexity of dynamic
systems has convinced most biologists that the human brain needs mathematical
formalisms to make any sense of the processes being studied. This means that systems
biology is by and large practiced by collaborative teams, which comprise experimental-
ists and theorists, with equal weighting between them.

In this book you will find chapters that describe how to identify cellular components
as well as the interactions among these components. You will also find chapters that
describe methods for perturbing biological systems such as the use of small molecules in
chemical genomics. Fittingly, a large portion of the book is devoted to quantitative
approaches to analyze and model the interactions, emergent properties, and dynamics
of the networks identified.

This work focuses on systems biology applied to plants. For many of the approaches
described here there is no distinction between plants and animals. However, it is
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appropriate to focus an entire book on plant systems biology as plants have been in the
vanguard of this field. The sequencing of the Arabidopsis genome opened the way for a
host of new and innovative approaches to understanding plant biology. From live
imaging of protein dynamics in floral meristems to the ability to follow chromosome
dynamics in individual cells, plant biologists are among the pioneers in this area. No
matter how you choose to define systems biology, it is likely to play an increasingly
important role in elucidating the mysteries of plant biology.

Philip N. Benfey
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Preface

Plant Systems Biology: Shooting a Moving Target

Plant systems biology is a fairly new art form. Unsurprisingly, its practitioners come
in a variety of different flavors, and accordingly, there exist a great many conflicting
definitions of what this art form really is (although this probably is true of any art form).
Researchers have been entering this field from all walks of scientific life – there are classical
plant physiologists by training, wet bench gene expression biologists like myself, cell
biologists, mathematicians, statisticians, bioinformaticians, software engineers, and other
more esoteric types ranging all the way to astrophysicists, etc.

The eclectic nature of this proverbial melting pot is also reflected in the content
of this volume, which contains sections covering topics from systems biology of plant
gene expression to analysis of networks, pathways, specific statistical issues and novel
computational tools, imaging-based tools as well as chemical genetic, metabolomic,
and integrative methods that cannot be easily pigeonholed.

While the definition of what plant systems biology really is may still be evolving, its
key leading figures have clearly emerged and who they are is largely beyond dispute.
Indeed, it is quite obvious who is driving the field forward and paving the way for others
who follow in their wake and broaden the path. It is for that reason that the foreword to
this volume is written by Philip Benfey, whose pioneering studies in the field of systems
biology of gene expression have received wide recognition far beyond the plant
community.

While the natural evolution of the field has been rapid and successful, it has become
quite obvious that the time has come for setting up dedicated training programs
in order to sustain this remarkable progress. This is already happening of course, in
the form of IGERT and other training grants, iPlant initiative, etc., but additional
modalities are needed. It is also the hope of the editor that this volume will make a
contribution to achieving this goal as well.

In closing, I would like to acknowledge the contributions of the members of my own
group over the years, and particularly that of Julia Chekanova, as well as the expert
editorial assistance of Teresa Crew, without whom this volume would never have seen
the light of day. Gene expression studies in my lab have been supported by grants from
NSF, USDA, BARD, and NIH.

Dmitry A. Belostotsky
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José R. Dinneny, and Philip N. Benfey

5. Applications of Ultra-high-Throughput Sequencing . . . . . . . . . . . . . . . . . . . . . . . 79
Samuel Fox, Sergei Filichkin, and Todd C. Mockler

6. Isolation of Plant Polysomal mRNA by Differential Centrifugation and Ribosome
Immunopurification Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Angelika Mustroph, Piyada Juntawong, and Julia Bailey-Serres

7. Chromatin Charting: Global Mapping of Epigenetic Effects . . . . . . . . . . . . . . . . . 127
Chongyuan Luo and Eric Lam

8. Clone-Based Functional Genomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Annick Bleys, Mansour Karimi, and Pierre Hilson

SECTION II: NETWORKS, PATHWAYS, STATISTICAL ISSUES, AND NOVEL

COMPUTATIONAL TOOLS

9. Challenges and Approaches to Statistical Design and Inference
in High-Dimensional Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Gary L. Gadbury, Karen A. Garrett, and David B. Allison

10. Discrete Dynamic Modeling with Asynchronous Update, or How to Model
Complex Systems in the Absence of Quantitative Information . . . . . . . . . . . . . . . . 207
Sarah M. Assmann and Réka Albert
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Chapter 1

Gene-Specific and Genome-Wide ChIP Approaches to Study
Plant Transcriptional Networks

Kengo Morohashi, Zidian Xie, and Erich Grotewold

Abstract

Chromatin immunoprecipitation (ChIP) provides a versatile tool to investigate the in vivo location of
DNA-binding proteins on genomic DNA. ChIP approaches are gaining significance in plants, in cases
when entire genome sequences are available (e.g., Arabidopsis), for which several high-density oligo arrays
have been or are being developed. Nevertheless, plant ChIP and ChIP-chip still present some technical
challenges. Here, we describe general methods for ChIP and ChIP-chip, which have been successfully
applied to maize and Arabidopsis.

Key words: Regulatory network, chromatin immunoprecipitation, transcription factor, histone.

1. Introduction

Protein–DNA interactions are central for life, for example as part
of normal chromatin assembly and in the recognition of specific
cis-regulatory elements (CRE) by transcription factors (TFs).
CREs provide the blueprints for the integration of cellular signals
on the DNA, with the proper gene expression response furnished
by the tethering of sets of TFs to specific DNA motifs and their
interactions with the basal transcription machinery. Understand-
ing which of the thousands of TFs expressed by plant genomes
recognize which CREs and establishing how combinations of TFs
on specific promoters contribute to the regulation of gene expres-
sion pose significant challenges in elucidating the architecture of
plant transcriptional regulatory networks (1).

Dmitry A. Belostotsky (ed.), Plant Systems Biology, vol. 553
ª Humana Press, a part of Springer Science+Business Media, LLC 2009
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Methods to identify protein–DNA interactions include experi-
mental and computational approaches, or combinations thereof
(1). Experimental approaches involve investigating the formation
of protein–DNA complexes for example by electrophoretic mobi-
lity shift assays (EMSA) or by exploring the specific DNA sequence
recognized by a TF on a given fragment of DNA using chemical or
nuclease footprinting techniques. These techniques, however,
involve in vitro protein–DNA interactions and their application
depends on the availability of a DNA fragment containing the
regulatory sequences. Two main approaches are currently available
to identify and/or validate the direct in vivo targets of a TF. The
first one involves expressing a fusion of the TF to GR (GR corre-
sponds to the hormone-binding domain of the glucocorticoid
receptor) and identifying the mRNAs induced/repressed in the
presence of the GR ligand (dexamethasone, DEX), in the presence
of an inhibitor of translation (e.g., cycloheximide, CHX) (2–6).
The second one involves identifying the DNA sequences that a TF
binds in vivo, using chromatin immunoprecipitation (ChIP)
assays. ChIP not only provides a tool to identify the in vivo loca-
tion of DNA-binding proteins on the DNA but also complements
many of the downfalls of EMSA and footprinting. The experimen-
tal steps necessary for implementing ChIP, or combinations of
ChIP with the hybridization of microarrays (ChIP-chip) corre-
sponding to entire genomes (tiling arrays) or just to the promoter
space of a genome (promoter arrays), are the subject of this
chapter.

In ChIP, intact tissues or cells are treated with a cross-linking
agent that covalently links the protein with the DNA. The chro-
matin is then sheared (using enzymatic or mechanical methods)
and the covalently linked protein–DNA complex is enriched by
immunoprecipitation (IP) using the specific antibodies to the
proteins (7). Multiple cross-linking agents that provide different
spacer lengths are available for ChIP (see Note 1). Formaldehyde
reacts with the amino groups of cytosines, guanines, and adenines
and the imino groups of thymines and guanines on the DNA,
although the reaction with imino groups is likely to be favored in
single-stranded DNA regions. From the protein side, several
amino acids are targeted by formaldehyde, including Lys, Arg,
Trp, and His. The final product of the reaction is the joining
of the two amino groups by a methylene bridge. The uniqueness
of this reaction is that it is reversible in aqueous solutions, and
the reversion of the cross-linking can be significantly increased
by incubation at 65�C. The reversibility of the formaldehyde-
mediated reaction furnishes an advantage that has made it the
favorite reagent for cross-linking. It should be noted, however,
that in some instances it is worth considering other cross-linking
agents, if the desired results are not obtained with formalde-
hyde (8).

4 Morohashi, Xie, and Grotewold



ChIP-chip (aka ChIP-on-chip or genome-wide location
analysis) involves the hybridization of a microarray representing a
fraction or the entire genome space with the DNA resulting from
the ChIP experiment (9). In plants, several arrays have become
available over the past couple of years for ChIP-chip experiments;
for example, for Arabidopsis, promoter (10, 11) and complete
tiling genome (10, 12, 13) arrays are available. In most instances,
the ChIPed DNA needs to be amplified prior to microarray hybri-
dization, because nanogram quantities of DNA are precipitated,
for example when using antibodies against a specific TF. Several
different amplification methods are available (14), and some are
discussed later. A plethora of statistical approaches have been
developed for the analysis of ChIP-chip results [e.g., (9, 15)];
their discussion and application are however beyond the scope
of this chapter. ChIPed DNA, however, can also be analyzed
by methods other than the hybridization to a microarray. For
example, the ChIP-Paired End diTag (PET) method results in
the generation of short sequence tags from the enriched target
DNA after a ChIP experiment (16). Alternatively, the ChIPed
DNA can be cloned and sequenced [e.g., (17)].

ChIP approaches are gaining significance in plants, parti-
cularly for those for which entire genome sequences are avail-
able (e.g., Arabidopsis). While ChIP-chip experiments have
been performed on just a handful of Arabidopsis TFs including
HY5 (11) and TGA2 (10), ChIP is becoming an increasingly
popular method to validate in vivo TF–DNA interactions pre-
dicted by other methods. Moreover, ChIP-chip can be applied
to identify the epigenetic control of the transcriptional
regulation.

2. Materials

1. Salmon sperm/protein A-agarose (Upstate P/N 16-157)

2. PCI: phenol:chloroform:isoamylic alcohol (25:24:1)

3. Buffer A: 0.4 M sucrose, 10 mM Tris pH 8.0, 1 mM EDTA,
1 mM PMSF (see Note 2), 1% formaldehyde

4. Lysis buffer: 50 mM HEPES pH 7.5, 150 mM NaCl, 1 mM
EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1%
SDS, 10 mM Na butyrate, 1 mM PMSF, 1X plant proteinase
inhibitor cocktail (Sigma) (see Note 2)

5. LNDET: 0.25 M LiCl, 1% NP40, 1% sodium deoxycholate,
1 mM EDTA

6. Elution buffer: 1% SDS, 0.1 M NaHCO3, 0.25 mg/ml
proteinase K

Plant ChIP Technique 5



7. PCR purification kit (QIAGEN), DNA Clean &
Concentrator – 25 (Zymo Research)

8. GenomePlex Whole Genome Amplification kit (Sigma, P/N
WGA-1): 10X library buffer, 10X library stabilization solu-
tion, library preparation enzyme

9. GeneChip1 Arabidopsis Tiling 1.0R Array (Affymetrix)

3. Methods

3.1. Chromatin

Immunoprecipitation

(ChIP) in Plants

3.1.1. Cross-Linking

Proteins to DNA

1. Immerse tissue into buffer A in a 50 ml falcon tube and keep it
under vacuum for 20 min (see Notes 3 and 4).

2. Add 2 M glycine to a final concentration of 0.1 M and con-
tinue vacuum for 10 min.

3. Wash the tissue with excess amount of distilled water and
remove as much water as possible.

4. Grind tissue in liquid nitrogen and resuspend in 400 ml of lysis
buffer (see Notes 5 and 6).

3.1.2. Sonication of

Chromatin (see Note 7)

1. Shear DNA by sonication to a fragment length that ranges
between 100 bp and 1000 bp (�500 bp on average) in an
eppendorf tube (see Notes 8 and 9).

2. Centrifuge at 10,000� g for 10 min at 4�C.

3.1.3. Immunoprecipitation

(see Note 10)

1. Pre-clear supernatant with 30 ml of salmon sperm/protein
A-agarose for at least 60 min with rotation at 4�C.

2. Transfer 100 ml of supernatant into three new eppendorf
tubes and add the antibodies (see Notes 11 and 12). Keep
approximately 100 ml of extract as the input fraction.

3. Incubate overnight with rotation at 4�C.

4. Add 30 ml of salmon sperm/protein A-agarose slurry and
continue incubation with rotation at 4�C for at least 2 h.

5. Centrifuge at 750� g (3000 rpm for microcentrifuge) for
1 min at 4�C.

3.1.4. Washes 1. Add 0.5 ml of lysis buffer, invert six times, centrifuge at
750� g for 1 min, and discard supernatant (see Note 12).

2. Add 0.5 ml of lysis buffer, rotate for 5 min, centrifuge at
750� g for 1 min, and discard supernatant.

3. Add 0.5 ml of LNDET, invert six times, centrifuge at 750� g
for 1 min, and discard supernatant.

4. Add 0.5 ml of LNDET, rotate for 5 min, centrifuge at 750� g
for 1 min, and discard supernatant.
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5. Add 0.5 ml of TE, invert six times, centrifuge at 750� g for
1 min, and discard supernatant.

6. Add 0.5 ml of TE, rotate for 5 min, centrifuge at 750� g for
1 min, and discard supernatant.

3.1.5. Reverse Cross-

Linking

1. Add 40 ml of elution buffer and incubate at 65�C for 15 min.

2. Centrifuge at 750� g for 1 min and transfer supernatant to
new tube.

3. Repeat eluting steps. The final elution volume should be now
80 ml. In parallel, add 70 ml of elution buffer into 10 ml of
input fraction for the input control, which represents 10% of
the cross-linked DNA (see Note 13).

4. Incubate all samples overnight at 65�C.

3.1.6. DNA Isolation Extract the DNA by using the PCR purification kit (QIAGEN). Elute
in 30 ml of EB buffer (10 mM Tris–HCl, pH 8.5) (see Note 14).

3.1.7. Quantification of

ChIPed DNA

We generally use 1 ml of eluted DNA samples for standard PCR
(see Note 15) and normalization (see Note 16), although larger
quantities can be used, if necessary.

3.2. ChIP-chip

3.2.1. DNA Amplification

After ChIP (see Note 17)

1. Add 1 ml of 10X fragmentation buffer to 10 ml ChIPed DNA
solution.

2. Place the tube in a thermal cycler at 95�C for exactly 4 min
(see Note 18).

3. Immediately cool the sample on ice and then centrifuge
briefly.

4. Add 2 ml 1X library buffer to 11 ml material (see Note 19).

5. Add 1 ml library stabilization solution. Mix by pipetting. Place
at 95�C for 2 min in thermal cycler.

6. Add 1 ml library preparation enzyme. Mix by pipetting.

7. Incubate in thermal cycler as follows:
16�C for 20 min24�C for 20 min

37�C for 20 min

75�C for 5 min

4�C hold
8. Add the following reagents into the library-prepared sample:

7.5 ml of 10X Amplification Master Mix

47.5 ml nuclease-free H2O

5 ml WGA DNA polymerase
9. Incubate in thermal cycler using the following program:

95�C for 3 min, then 14 cycles of

94�C for 15 s
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65�C for 5 min, then

4�C hold
10. Purify the sample using the DNA Clean & Concentrator – 25

system.

11. Quantify the amount of DNA by A260. If the total DNA amount
is less than 1 mg, reamplify the sample using GenomePlex WGA
Reamplification kit starting from step 1.

12. Use 5–10 mg of amplified DNA for the hybridization of the
array (see Note 20).

3.2.2. DNA Fragmentation,

Labeling, Tiling Array

Hybridization, Wash, and

Detection

For DNA fragmentation, labeling, hybridization, wash, and detection,
we follow the Affymetrix 100K protocol (http://www.affymetrix.
com/support/technical/byproduct.affx?product=100k).

3.2.3. Data Analysis

(see Notes 21 and 22)

The complete information on the Affymetrix tiling array is pro-
vided by the .CEL file. To analyze the data, several tools are
currently available, with MAT (model-based analysis of tiling
array) providing a convenient first step (15). To use MAT, a
UNIX platform or equivalent is required. MAT requires the .CEL,
.bpmap, and .lib files. The .CEL file contains the signals of all the
probes on the array, the .bpmap files provide information on the
probe locations and copy numbers, and the .lib file contains the
repeat information.

4. Notes

1. These include formaldehyde, dimethyl adipimidate (DMA),
dimethyl pimelimidate (DMP) dimethyl suberimidate (DMS),
N-hydroxysuccinimide (NHS), tris-succinimidyl aminotriace-
tate (TSAT), disuccinimidyl suberate (DSS), disuccinimidyl
glutarate (DSG), and ethylene glycol bis(succinimidylsuccinate)
(EGS) (8, 18).

2. PMSF, which is unstable in aqueous solution, and the protei-
nase inhibitor are added just before use.

3. In general, we use approximately 240 mg tissue for three
precipitations plus input, which consist of IgG for the nega-
tive control, histone 3 (H3) antibody for the positive control,
the antibody against the specific TF or tag and input. Alter-
natively 1.2 g of tissue for three precipitations might be used
in a large-scale experiment, if the small-scale experiment does
not yield enough DNA.

4. We have used various tissues so far including Arabidopsis and
maize seedlings, Arabidopsis and maize leaf tissues, Arabidopsis
root tissue, Arabidopsis flower buds, maize Black Mexican
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Sweet cells, and maize protoplasts transiently expressing
epitope-tagged transcription factors. If not used immediately,
cross-linked samples can be stored at –80�C.

5. The quality of grinding is very critical for the successful out-
come of the experiments and the tissues must be ground very
well.

6. We also have homogenized tissues in microcentrifuge tubes
using a small plastic pestle in lysis buffer, in cases when only
small quantities of tissue were available. The quality of the
small-scale homogenization is as good as grinding larger
quantities of tissue in liquid nitrogen, yet care must be used
in not warming the extract more than necessary when holding
the tube between the finger tips.

7. Alternatively, methods are available that use DNase I nuclease.

8. Sonication is the most critical step for the success of ChIP
experiments. The ideal sonication conditions depend on a
number of factors including the volume of extract, the soni-
cator tip size, and the sonicator itself. An optimal sonication
condition should be identified prior to performing the ChIP
experiment. For example, when using Arabidopsis seedling
we have determined that in a Vibra Cell Sonicator (Sonics&
Materials) five repeats of 15 s each at 10% amplitude provide
the best results. To determine the optimal sonication con-
ditions, various parameters should be tested such as the
amplitude and duration of the sonication cycles (e.g., 5,
10, 40% of amplitude for 0, 10, 30, 60, 300 s) using cross-
linked extract. Then, after reverse cross-linking and DNA
purification, the size of the fragmented DNA is verified by
electrophoresis.

9. Avoid making bubbles during sonication. Bubbles cause a
significant reduction in sonication efficiency.

10. ChIP results strongly depend on the quality (affinity and
specificity) of the antibody. We use antibodies against his-
tones as experimental positive controls since commercially
available antibodies that recognize a number of histone-tail
modifications have been extensively used in ChIP experiment
in plants, yeast, and animals.

11. We succeeded in obtaining reproducible signals by using
antibodies that recognize acetylated H3 at position K9
(H3K9ac) (Upstate P/N 06-599) and anti-GFP (abcam P/N
ab290). Antibody amounts are variable (19–21). For exam-
ple, we use 2 mg of IgG, 1 mg of H3K9ac, and 1 ml of anti-
GFP antibodies for 100 ml of extract. However, monoclonal
anti-myc epitope antibodies (line 9E10) have so far resulted
in faint and irreproducible signals when using Arabidopsis
extracts.
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12. The washing steps should be ideally performed in the cold
room.

13. Make sure that the final concentration of SDS, NaHCO3, and
proteinase K in the input sample is the same as in the other
samples when adjusting the volume.

14. Elution volume depends on the amount of starting tissue. For
example, if we start with 200 mg of plant tissue, we elute in
30 ml. For the isolation of DNA from the input extract, PCI
extraction can be used when starting from large quantities of
plant material. The purification using the QIAGEN columns
is performed after the PCI extraction.

15. Since the ChIPed DNA is usually in very low amounts, the
detection of the target DNA requires PCR. Therefore, there
is a risk of PCR amplification bias; thus we strongly recom-
mend quantitative PCR or semi-quantitative PCR to compare
the enrichment of the target DNA with respect to the input
control.

16. To accurately compare the quantity of ChIPed and input
DNA, we recommend a double normalization using input
DNA and a reference primer set. The ratio between the
input and ChIPed DNA is a good index for the enrichment
during the ChIP. However, it is always possible that there is a
bias, for example because of non-specific binding of DNA to
the beads. To rule out such artifacts, the reference primer set
is used. The reference primer set should not to be a target of
the TF in study, of course. For Arabidopsis, for example, we
routinely use primers corresponding to ACT2/7 (15). The
final normalization can then be done using the following
formula:

ðChIPedDNAtarget=InputDNAtarget Þ
ðChIPedDNAreference=InputDNAreferenceÞ

17. Amplification is one of the most critical steps for ChIP-chip.
Among several available amplification methods, we use the
GenomePlex Whole Genome Amplification (WGA) kit
(Sigma) with the modifications previously described (14).
Using WGA, we have successfully obtained reproducible results
with various tissues and mutants of Arabidopsis.

18. The incubation time is very critical.

19. The amount of ChIPed DNA is usually less than 1 ng/ml; thus
accurately measuring the amount of DNA is challenging. We
generally use 11 ml as start material for the amplification.

20. For the purpose of this manuscript, we are primarily referring
to the Affymetrix GeneChip1 Arabidopsis Tiling 1.0R Array.
We have also used less than 5 mg of amplified DNA, yet the
results have been variable.
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21. The ideal way to perform a ChIP-chip experiment is by the
side-by-side comparison of wild-type and mutant tissue, the
latter corresponding to tissues lacking the specific TF. In such
a case, the ChIP-chip analysis is performed by comparing the
input and ChIP DNA from both the wild-type and mutant
samples. Alternatively, if using plants expressing an epitope-
tagged version of the TF, plants not expressing the transgene
can be used as the mutant sample.

22. There are many methods to analyze ChIP-chip data. Gener-
ally, the analysis can be divided into two steps: normalization
and detection of enriched signal region. The MAT algorithm
takes care of both steps at the same time. It standardizes the
probe value through the probe model, which consist of base-
line probe behavior by considering probe sequence and copy
number. Therefore, it eliminates the normalization step.
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Chapter 2

Genome-Wide Analysis of RNA–Protein Interactions in Plants

Alice Barkan

Abstract

RNA–protein interactions profoundly impact organismal development and function through their con-
tributions to the basal gene expression machineries and their regulation of post-transcriptional processes.
The repertoire of predicted RNA binding proteins (RBPs) in plants is particularly large, suggesting that the
RNA–protein interactome in plants may be more complex and dynamic even than that in metazoa. To
dissect RNA–protein interaction networks, it is necessary to identify the RNAs with which each RBP
interacts and to determine how those interactions influence RNA fate and downstream processes. Identi-
fication of the native RNA ligands of RBPs remains a challenge, but several high-throughput methods for
the analysis of RNAs that copurify with specific RBPs from cell extract have been reported recently. This
chapter reviews approaches for defining the native RNA ligands of RBPs on a genome-wide scale and
provides a protocol for a method that has been used to this end for RBPs that localize to the chloroplast.

Key words: RNA–protein interaction, RIP-chip, RNA coimmunoprecipitation, microarray, RNA
binding protein.

1. Introduction

Organismal development, homeostasis, and environmental adap-
tation require the regulated expression of large sets of genes. The
rates of an array of post-transcriptional events are superimposed
upon the transcription rate to determine the output of each gene,
and in some cases, post-transcriptional steps play a dominant role.
Thus, RNA binding proteins (RBPs) that influence the processing,
nuclear export, stability, or translation of RNA subsets are likely to
contribute to the large-scale coordination of gene expression
(reviewed by (1, 2)). RBPs are also at the core of the machineries
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that localize specific mRNAs within cells, thereby influencing the
localization of protein synthesis to specific subcellular domains in
plants, animals, and fungi (reviewed in (3, 4)).

It has long been appreciated that post-transcriptional mechan-
isms play a major role in determining gene expression levels in
plant mitochondria and chloroplasts (reviewed in (5, 6–9)).
Recently, the importance of post-transcriptional events in dictat-
ing other plant traits has been highlighted by the recovery of genes
encoding nuclear/cytosolic RBPs and microRNAs in genetic
screens for phenotypes affecting diverse processes such as flo-
wering, circadian control, and hormone responses (reviewed in
(10, 11–13)). Genome-wide assays to explore the impact of post-
transcriptional regulatory mechanisms in plants have only recently
begun, but the results thus far suggest that their impact is con-
siderable. For example, the stabilities of mRNA subsets are under
circadian control (14) and stress-induced changes in the transla-
tion of large sets of plant mRNAs have been reported (15, 16).
Although large-scale analyses of regulated changes in splice iso-
form populations have not yet been reported in plants, there is
evidence that both biotic and abiotic stresses influence the alter-
native splicing of plant pre-mRNAs (reviewed in (17)) (18, 19).

Interactions between RNAs and RBPs in ribonucleoprotein
particles (RNPs) underlie the biogenesis, localization, translation,
and turnover of mRNAs, the biogenesis of non-coding RNAs, and
the regulation of all of these processes (20). However, even in the
most intensively studied fungal and animal systems, the functions
and RNA ligands for the vast majority of predicted RBPs remain
unknown (1). The challenge is still greater in plants, whose reper-
toire of predicted RBPs is considerably larger than that in metazoa
(10, 21–26). Gene families encoding homologs of proteins impli-
cated in nuclear pre-mRNA splicing, polyadenylation, and mRNA
decay are expanded in plants (21–23). Additional complexity is
introduced by the maintenance of a third genetic compartment in
plants, the chloroplast, where RNA editing, group I and group II
intron splicing, endonucleolytic mRNA processing, and regulated
translation and mRNA turnover are prevalent (reviewed in (6, 8,
9)). Furthermore, RNA metabolism in plant mitochondria is sub-
stantially more complex than that in metazoa, sharing many fea-
tures with that in chloroplasts (reviewed in (5, 7, 8)). Indeed,
the expansion of two RBP families specifically in the plant lineage
(the CRM and PPR families) appears to be linked to the prominent
roles of post-transcriptional aspects of gene expression in these
organelles (24, 25, 27).

Identification of the RNAs with which each RBP is associated is
at the core of understanding RNP interaction networks. The phe-
notypes conditioned by loss-of-function mutations in RBP genes
can provide clues about their RNA ligands, especially when coupled
with genome-wide assays for changes in mRNA profiles (see, for
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example, (28–30)); however, it can be difficult to distinguish the
direct consequences of a mutation from secondary effects. SELEX
assays (31) can be informative (see, e.g., (32, 33)), but require large
quantities of folded recombinant protein, reveal only the highest
affinity RNA ligands which do not necessarily reflect the physiolo-
gical targets, and identify only short sequence motifs, whose in vivo
correlates can be difficult to infer. Yeast-3-hybrid screens (34, 35)
provide another tool for seeking proteins that bind a known RNA or
vice versa, but false-negatives due to poor expression of either the
protein or RNA component are common. Proteins that bind a
specific target RNA can sometimes be purified from native extract
by RNA affinity chromatography (e.g., (36)). However, such
approaches are plagued by false-positives due to the typically non-
specific binding of RBPs to RNA in vitro unless conditions are
carefully optimized to reveal sequence-specific interactions.

Thus, although assays that take RNAs and RBPs out of their
normal cellular context are important components of the toolkit
for deciphering RNA/protein partners and recognition mechan-
isms, ideal starting points for such explorations are the RNA/
protein complexes found in the native organism. Toward this
end, affinity purification of specific RBPs from native extract
coupled with unbiased methods for identifying copurifying
RNAs would seem to have great potential; indeed, studies employ-
ing such approaches are being reported with increasing frequency.
The strategy used most commonly thus far couples immunopreci-
pitation of native RNPs with microarray analysis to identify the
coimmunoprecipitated RNAs; this approach is often referred to as
‘‘RIP-chip’’, after the related ‘‘ChIP-on-chip’’ method for DNA
binding proteins. Although RIP-chip has so far been applied in
plants only to chloroplast RNPs (37–40) and to identify ribosome-
bound cytosolic mRNAs (41) (see also the chapter by Mustroph,
Juntawong, and Bailey-Serres in this volume), the wealth of infor-
mative results obtained with nuclear-cytosolic RNPs in other sys-
tems (reviewed in (1, 2)) argue that analogous efforts will be
similarly fruitful in plants.

Approaches for large-scale analysis of native RNPs are still
developing and a variety of methods have been employed for
affinity purification of the RBP and identification of the associated
RNAs. Below is a discussion of key choices that must be made in
designing experiments of this nature, followed by our protocol for
‘‘RIP-chip’’ in chloroplasts.

1.1. Custom Antibody

Versus Expression

of Tagged Protein?

Purification of an RBP from cell extracts can employ either custom
antibodies or the affinity purification of a modified protein
expressed in vivo with an affinity tag. Tagging approaches are
ideal in organisms such as yeast where the endogenous gene can
easily be modified to encode a tagged protein isoform; indeed, this
approach has been the rule in RIP-chip studies in yeast (42–49). In
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less easily manipulated organisms, the benefits of using a tag should
be carefully weighed against the effort involved in excluding poten-
tial artifacts. First, it is essential to demonstrate functionality of a
tagged protein by complementation of a corresponding loss-of-
function mutant. In addition, protein expression should be driven
from the native promoter because aberrantly high or ectopic RBP
expression can lead to artifactual interactions. For example, over-
expression of the RNA binding protein FRG1 causes the aberrant
splicing that underlies the disease facioscapulohumeral muscular
dystrophy (50). Ectopic over-expression of SR proteins caused
aberrant splicing in human cells (51) and resulted in aberrant devel-
opment and auxin signaling in Arabidopsis (52). Likewise, over-
expression of the poly(A) binding protein PABPN1 changed the
accumulation of a large number of mRNAs in mammalian cells (53).

Thus, when working with complex organisms like plants and
metazoa it may generally be more reliable, faster, and more cost-
effective to use custom antibodies than to appropriately express and
test the functionality of tagged proteins. The published studies of this
nature are illustrative in this regard: 18 large-scale studies of RNAs that
copurify with RBPs from metazoan extracts had been reported at the
time of submission, and 16 of these used custom antibodies to immu-
noprecipitate RNPs (28, 54–68). All of the reports involving bacteria
(69) and chloroplasts (37–40) have likewise used custom antibodies.
The two exceptions (70, 71) used Drosophila cells and demonstrated
the functionality of the tagged protein by complementation of the
appropriate mutants. That being said, an interesting approach to gene
expression profiling in complex tissues has been described that effec-
tively exploits a tagging approach by using a tagged isoform of poly(A)
binding protein to pull down mRNAs expressed in one cell type within
a heterogeneous cell population (72).

1.2. To Crosslink or Not

to Crosslink. . .

An ongoing discussion in this field concerns the relative merits of
crosslinking macromolecules prior to cell lysis versus purifying
native complexes without crosslinking. Incorporation of a cross-
linking step would appear to be advantageous in that crosslinks
can capture weak interactions and allow the use of stringent washing
procedures to reduce contaminants and eliminate RBP–RNA inter-
actions that may form after cell lysis (73, 74). Formaldehyde cross-
linking, which is used routinely for chromatin immunoprecipitation
experiments, has thus far been reported only for small-scale studies
of RNA–protein interactions (75). In fact, formaldehyde crosslink-
ing has been reported to give poor results in large-scale RIP-chip
assays (76, 77), possibly due to deleterious effects on cell lysis and
RNA recovery, and a high background of RNA–RNA crosslinks. On
the other hand, ChIP-on-chip procedures involving formaldehyde
crosslinking were used effectively to identify genomic DNA that is
associated co-transcriptionally with two splicing factors (47, 61).
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Ultraviolet (UV) light is used as a crosslinking agent in the
‘‘CLIP’’ (crossl inking and immunoprecipitation) assay, which was
used to identify RNAs associated with the Nova splicing factor
(62, 74). CLIP assays begin with the exposure of living cells to UV
light, which induces crosslinks between proteins and RNAs that
are in close proximity. This is followed by a limited ribonuclease
digestion to reduce the size of the RNAs associated with the RBP
of interest, immunopurification of the target RBP, further purifi-
cation of the RNA/RBP complexes by SDS-PAGE, and identifica-
tion of the bound RNAs by linker ligation, RT-PCR, cloning, and
sequencing. An advantage of CLIP is that only RNAs that are in
direct contact with the ‘‘bait’’ protein will be identified; however,
this can also be viewed as a disadvantage if the goal is to elucidate
the higher-level organization of RNPs. Another advantage of
CLIP is that the protein binding sites on the copurified RNAs
are pinpointed to within a few hundred nucleotides. This resolu-
tion greatly simplifies the identification of sequence motifs recog-
nized by the RBP of interest. It should be noted, however, that
similar resolution has been obtained without crosslinking by using
small, tiled hybridization probes to detect peaks of enrichment
within a large RNA ligand (38) (Don Rio, personal communica-
tion). Disadvantages of CLIP include the low efficiency of UV
crosslinking and the fact that UV crosslinking can capture only the
subset of interactions in which specific bases are in a specific
juxtaposition with specific amino acids.

Despite its apparent advantages, the number of large-scale
studies that have used a crosslinking strategy (62, 66) is dwarfed
by the number that have used uncrosslinked lysates (28, 37–40,
42–46, 48, 49, 54–60, 63–65, 67–72). The conclusions in most of
these studies were validated in other ways (see below), highlight-
ing the enormous potential of straightforward strategies that use
native lysates without crosslinking. The relatively low impact of the
CLIP approach thus far may be attributable to the technically
challenging protocol and to the high false-negative rate that is a
predicted consequence of the UV-crosslinking strategy. With the
recent refinements of the CLIP protocol (74) and as new cross-
linking strategies are developed, approaches that use crosslinking
are likely to increase in prominence.

1.3. Distinguishing

True from False-

Positive

A challenge with all genome-wide methodologies is to identify
true-positives from within the complex data set returned. One
potential source of artifacts is the method used to detect the
RNA ligands. Thus, if microarrays are used initially to identify
RNAs that copurify with the RBP of interest, several of the puta-
tive positives are typically confirmed by RT-PCR or slot-blot
hybridization assays. A more important source of background
arises from non-specific interactions of RNPs with the antibody
or affinity matrix. This type of background can be reduced by
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preclearing the lysate with a mock precipitation and by the use of
stringent washing conditions. However, it is inevitable that abun-
dant RNAs will contaminate the affinity preparation (except, per-
haps, with the CLIP assay). Therefore, suitable negative controls are
essential. Negative controls for immunoprecipitation experiments
typically use a non-specific antibody and/or start with mutant cells
lacking the bait RBP; for tagging approaches, genotype-matched
cells that do not express the tagged isoform are used. A variety of
statistical approaches have been used to identify sequences that are
significantly more enriched in experimental samples than in control
assays (e.g., (38, 43, 45, 58) and see the chapter by Gadbury,
Garrett, and Allison in this volume). Rigorous statistical cutoffs
enhance confidence that authentic interactions have been identified,
but firm conclusions require additional genetic and/or biochemical
validation, as summarized below.

A potential source of false-positives in studies that lack a cross-
linking step is rearrangement of RNPs after cell lysis. One study
showed that an RBP expressed in one cell population can associate
after cell lysis with one of its native RNA ligands expressed in a
different cell population (73). Two other studies, however,
addressed this issue explicitly and did not see evidence of post-lysis
exchange (49, 72). In our chloroplast RIP-chip assays, there has
been excellent correspondence between the RNA ligands suggested
by the RIP-chip data and the RNAs whose metabolism is disrupted
in the corresponding mutant background ((37–40) and unpublished
data). Likewise, positives to emerge in many large-scale studies of
nuclear-cytosolic RNPs were validated in other ways (see below).
Thus, although post-lysis exchange can occur with some proteins
under some conditions, evidence thus far suggests that it does not
generally contribute a substantial signal in large-scale assays.

Regardless of the approach employed, even the strongest
‘‘positives’’ should be considered tentative without additional vali-
dation. Aberrant metabolism of putative RNA ligands in the cor-
responding knock-down or mutant lines is particularly compelling
validation (28, 37–40, 43–46, 48, 54, 56–58, 62, 65, 66, 69, 70)
Biochemical and bioinformatic approaches can also be used to
validate putative positives by identifying shared sequence motifs
and/or functional relationships among the RNAs identified and
by demonstrating that the bait protein binds with specificity in
vitro to a sampling of these RNAs (43, 48, 54–56, 58, 60, 67, 71).

1.4. Identification

of the Copurifying

RNA Species

Large-scale identification of RNAs that copurify with the bait RBP
can be accomplished in a variety of ways. SAGE approaches have
been used successfully (62, 63) but array-based approaches have
been the more common choice. The broadest coverage and best
resolution is provided by genomic tiling arrays, if they are available.
Generally, fluorescent dyes have been incorporated into cDNA
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generated from the recovered RNA, either with or without an
amplification step. Certainly, amplification should be avoided if
possible because it can change the relative representation of differ-
ent sequences. During the development of our chloroplast RIP-
chip assay, we compared the results obtained with labeled cDNAs
to those obtained by direct labeling of RNA using commercially
available platinum-based reagents. We found direct labeling of the
RNA to be simpler than the generation of labeled cDNA and also
to give superior results (see protocol below). Unfortunately, oli-
gonucleotide arrays designed for gene expression profiling are
often designed with the assumption that they will be probed
with cDNA, so the strand specificity of the array must be consid-
ered before deciding on a labeling strategy.

It is likely that high-throughput sequencing technologies will
supercede array-based approaches for detecting nucleic acids that
copurify with RBPs, especially as the costs for these technologies
come down. In fact, sequencing with the Illumina platform was
recently used for genome-wide chromatin immunoprecipitation
assays (ChIPSeq) (78–81).

1.5. Extract

Preparation: A Special

Challenge in Plants

Most large-scale analyses of RBP/RNA interactions have used
whole-cell extracts from yeast and metazoa. Maintaining a highly
concentrated extract is likely to be important for minimizing the
dissociation of weak RBP/RNA interactions. In plants, it is
straightforward to generate concentrated chloroplast and mito-
chondrial extracts by lysing the purified organelles in a minimal
volume. However, the generation of extracts suitable for the ana-
lysis of nuclear and cytosolic RNPs from plants may be compli-
cated by the presence of the cell wall and the large vacuole. For
nuclear RNPs, preparation of an extract from a nuclear pellet may
be advantageous: this approach can yield a concentrated extract
harboring the RNPs of interest while also eliminating potential
RNA contaminants from other compartments. In fact, use of a
nucleoplasm fraction prepared as described by Pinol-Roma et al.
(82), in conjunction with high-resolution genome tiling arrays,
resulted in distinct and highly resolved data sets for four hnRNP
proteins in Drosophila (Don Rio, personal communication). An
alternative for nuclear RBPs that are recruited co-transcriptionally
to nascent RNA is to use ChIP to identify the DNA sequences with
which they are associated (47, 61). ChIP in plants is well estab-
lished ((83), and see chapter by Morohashi, Xie, and Grotewold in
this volume), so extrapolation of this method to plant RBPs may
be relatively straightforward. Another promising avenue to explore
with plants is the use of frozen tissue for the preparation of whole-
cell extracts. Rapid freezing of yeast cells prior to RNP extraction
was recently reported to be advantageous for the recovery of intact,
uncontaminated RNPs (49). Indeed, RNPs extracted from pulver-
ized frozen leaf tissue were used for the immunoprecipitation of
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maize chloroplast polysomes translating specific proteins (84) and
for the affinity purification of cytosolic mRNAs in Arabidopsis
associated with ribosomes (41).

2. Materials

2.1. Stock Solutions To minimize ribonuclease contamination, solutions should be
filtered through 0.2 mm nitrocellulose filters to remove trace pro-
teins, filter tips should be used for micropipetting, and clean gloves
should be worn at all times. All steps are performed at 4�C, unless
otherwise indicated.

1. Hypotonic lysis buffer: 30 mM HEPES-KOH pH 8, 10 mM
magnesium acetate, 60 mM potassium acetate, 2 mM dithio-
threitol, 2 mg/ml aprotinin, 2 mg/ml leupeptin, 1 mg/ml
pepstatin, 800 mM PMSF (added fresh).

2. CoIP buffer: 150 mM NaCl, 20 mM Tris–HCl, pH 7.5,
1 mM EDTA, 0.5% NP-40, 5 mg/ml aprotinin. The addi-
tion of 2 mM MgCl2 is sometimes beneficial to stabilize
Mg++-dependent RNPs. If MgCl2 is added, EDTA should
be excluded.

3. Phenol–chloroform–isoamyl alcohol (25:24:1), equilibrated
with aqueous buffer (pH �8).

4. 10% SDS.

5. 0.2 M EDTA.

6. 20X SSC: 3 M NaCl, 0.3 M sodium citrate, pH 7.0.

7. 20X SSPE: 3 M NaCl, 0.2 M NaH2PO4, 0.02 M EDTA.

8. 95% ethanol.

9. 0.1 M Tris–HCl, pH 8.3.

10. 3 M NaAcetate, pH �5.5.

11. 1 M Tris–HCl, pH 8.0.

12. 5 M NaCl.

13. ‘‘RNase-free’’ deionized H20.

2.2. Reagents and

Equipment

2.2.1. Extract Preparation

1. Disposable syringe (3 ml), 21 gauge needle

2. Hypotonic lysis buffer

3. Bradford protein assay (Bio-Rad)

2.2.2. Immunoprecipitation 1. Antibodies: Any antibody that can immunoprecipitate the bait
RBP from native extract can be used. We have had excellent
success using polyclonal antibodies generated to a recombinant
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fragment of the target protein, whereas antibodies generated to
synthetic peptides have been unreliable in our hands. For the
antigen, select a hydrophilic segment of the RBP (> �10 kDa)
that lacks strong similarity (e.g., <40% identity, <60% similar-
ity) to other proteins in the host species. Over-express this
protein in Escherichia coli by using any standard expression
vector. Expression as a 6x-histidine-tagged protein from a pET
vector is simple and reliable. Many proteins expressed in this
manner aggregate in E. coli, but this does not detract from their
suitability as an antigen. Antibodies are affinity-purified on an
antigen affinity matrix (85) prior to use in RIP-chip assays.

2. CoIP buffer.

3. RNAsin ribonuclease inhibitor (Promega).

4. Protein A matrix for collection of antigen–antibody com-
plexes: Antigen–antibody complexes can be precipitated by
Protein A coupled to any of a variety of materials. Many
immunoprecipitation protocols use Protein A/G Sepharose
beads, but we prefer formalin-fixed Staph A cells (IgG Sorb,
The Enzyme Center) because they are inexpensive, effective,
and form a more easily manipulated pellet. However, we have
some data suggesting that residual nucleic acids from the
Staph A cells may contribute a false ‘‘pellet’’ signal to array
spots from mitochondrial rRNAs, so it may be best to use
beads for assaying mitochondrial RBPs. Conjugating antibo-
dies to magnetic beads provides another alternative (49).

2.2.3. RNA Purification and

Labeling

1. 10% SDS

2. 0.2 M EDTA

3. Phenol–chloroform–isoamyl alcohol

4. 10mMTris–HClpH8,1mMEDTA,100mMNaCl,0.25%SDS

5. 3 M sodium acetate

6. 95% ethanol

7. 5 mM Tris–HCl pH 8.3

8. GlycoBlue (Ambion)

9. Micromax ASAP RNA Labeling Kit (Perkin–Elmer)

10. Qiaquick Nucleotide Removal Kit (Qiagen)

2.2.4. Immunoblot Analysis

to Test Immunoprecipitation

1. Standard materials, buffers, and equipment for SDS-PAGE
and immunoblotting.

2. ‘‘One-Step Western Blot Kit’’ (GenScript Cat # L00204) is
useful for antigens that comigrate with the IgG heavy chain.

2.2.5. Microarray

Hybridization and Washing

1. Microarray: The choice of microarray platform will depend
upon the species and genetic compartment under study. Our
assays have used custom microarrays with tiled PCR products
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of �500 base pairs spotted onto glass slides. The Micromax
ASAP labeling method is not compatible with oligonucleo-
tide arrays that are designed to detect only the antisense
strand (i.e., cDNA) rather than the mRNA itself. Our meth-
ods for printing and post-processing chloroplast microarrays
are described in (38).

2. Heating blocks set to 85 and 60�C.

3. Hybridization oven or heated water bath for microarray
hybridization, set to 58�C.

4. Slide warmer (LabLine Instruments) set to �55�C.

5. Microarray hybridization chamber (Corning #2551).

6. LifterSlip Premium Printed Coverglass (Erie Scientific
24�601-2-4733).

7. Slide Staining Dishes and Slide Holders (Wheaton Glass #
900200).

8. 3X SSC.

9. 0.5X SSC, 0.01% SDS.

10. 0.06X SSC, 0.01% SDS.

11. 0.06X SSC.

2.2.6. Slot-Blot Validation 1. 1X and 2X SSPE.

2. Standard reagents and equipment for generating radiolabeled
probes, and for RNA gel blot hybridization and washing.

3. MagnaNylon Membrane (0.45 mm pore) (GE Water and
Process Technologies).

4. Slot-blot manifold.

5. UV-crosslinking device designed for RNA/DNA gel blots
(e.g., Stratalinker).

3. Methods

3.1. Lysate Preparation Chloroplasts are purified from seedling leaves according to any
standard protocol (see, e.g., (86)). The chloroplast pellet is lysed
by incubation for 15 min on ice in a minimal volume of hypotonic
lysis buffer, punctuated with several rounds of vortexing. To com-
plete the lysis, the material is drawn with a syringe through a 21
gauge needle and syringed up and down several times; bubbles
should be avoided. Membranes are pelleted by centrifugation in a
microfuge (4�C) at the highest setting for 30 min. The supernatant,
which contains the stroma and some envelope membranes, is used
for the RIP-chip assays (see Note 1). The protein concentration of
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the extract is determined with a Bradford assay (Bio-Rad) and
should be between 5 and 20 mg/ml. The extract is flash-frozen
and stored in aliquots of �100 ml (�1 mg protein) at –80�C.
Freeze–thaws prior to immunoprecipitation should be avoided.
Each aliquot is used for between two and four RIP-chip assays,
performed in parallel. A modification of this method that has
succeeded for maize mitochondrial extracts is described in
Note 1.

3.2. Experimental

Design

Our procedure uses spotted microarrays probed simultaneously
with differentially labeled RNAs from the immunoprecipitation
pellet and supernatant. Although total input RNA or RNA from
the pellet of a mock precipitation can be used as the reference
sample, we have obtained better results by using the supernatant
RNA as the reference (see (38)).

A negative control is essential to identify abundant RNAs or
‘‘sticky’’ RNPs that contaminate the immunoprecipitation pellet. An
effective control for this purpose uses affinity-purified antibody to a
different protein at a similar IgG concentration to that used for the
experimental sample. An immunoprecipitation using extract pre-
pared from material that lacks the target antigen but that is otherwise
similar to the experimental extract (e.g., from a null mutant, or from
genotype-matched cells not expressing the tagged isoform, if a tag is
used) is an excellent control, if such material is available.

3.3. Immunoprecipita-

tion

3.3.1. Wash Staph A Cells

Formalin-fixed Staph A cells must be washed thoroughly to
remove any dissociated Protein A because this will titrate out the
antibody and reduce the yield of the precipitation:

1. Shake the bottle of cells to give a homogeneous suspension.
Remove a quantity of cell suspension that is sufficient for
several days’ use. Divide the suspension between several
1.5 ml microfuge tubes; place less than �0.8 ml in each
tube because large cell pellets can be difficult to resuspend.

2. Pellet the cells by centrifugation for�1 min in a microfuge at
�10,000 rpm. Pipet off the supernatant and replace it with a
similar volume of coIP buffer. Pipet up and down vigorously
to resuspend the cells.

3. Repeat this washing procedure two more times, for a total of
three washes. Resuspend the final cell pellet in coIP buffer to
the initial volume. Combine the aliquots. Store at 4�C for up
to 2 days.

3.3.2. Preclear Lysate The quantity of stromal extract to use for a RIP-chip experiment
will depend upon the abundance of the target RNPs. Aliquots
of extract containing 0.5 mg of protein have yielded strong
RIP-chip signals with a variety of low-abundance plastid RBPs
(37–40). For more abundant RBPs, less lysate should be sufficient.
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Typically, several immunoprecipitations are performed with each
thawed aliquot of lysate. It is convenient to perform these pre-
clearing steps before dividing the stroma for subsequent
immunoprecipitations:

1. Place sufficient extract for control and experimental immu-
noprecipitations on ice and thaw slowly. Add RNAsin (Pro-
mega) to the thawing stroma (�20 units per 100 ml stroma)
to reduce RNA degradation (see Note 2).

2. Centrifuge the extract for 10 min at�12,000 rpm in a micro-
fuge to remove insoluble particles. This step is very important
to reduce background.

3. Further preclear the supernatant with washed IgSorb Staph
A cells as follows. Centrifuge 100 ml of the washed Staph
A cell suspension briefly to pellet the cells. Discard the super-
natant. Resuspend the cell pellet in the cleared stromal lysate
from step 2 above. Pipet up and down to resuspend the
pellet, avoiding bubbles. After 10 min on ice, pellet the
cells by centrifugation for �5 min at �10,000 rpm in a
microfuge (4�C). Carefully pipet the supernatant into
new tubes for use in the immunoprecipitation reactions.
Reserve a small aliquot (e.g., 1/20th) of this supernatant
for immunoblot analysis to assess the success of the
immunoprecipitation.

3.3.3. Antibody Binding 1. Add affinity-purified antibody to the lysate. The optimal
amount of antibody needs to be determined empirically (see
Note 3) but will typically be between 2 and 10 ml.

2. Leave on ice for 1 h with occasional gentle mixing.

3.3.4. Precipitation of

Antigen–Antibody

Complexes

1. Shake a tube of washed Staph A cells to suspend the cells, and
add 100 ml of the suspension to each immunoprecipitation.
Mix gently. (If using crude serum, see Note 3.)

2. Store on ice for 30 min with occasional gentle mixing.

3. Pellet cells by microcentrifugation at�10,000 rpm for 1 min.

4. Carefully pipet off the supernatant. Remove 1/10th of the
supernatant to a separate tube to be used for immunoblot
analysis; the remainder will be used for RNA extraction. Store
both tubes of supernatant at –80�C until needed.

5. Resuspend cells thoroughly in �0.5 ml of coIP buffer by
pipetting up and down. (See Note 4 for alternative wash
buffers used to reduce non-specific binding.) Be sure to dis-
rupt all visible cell clumps.

6. Pellet the suspended cells by microcentrifugation for 1 min
(�10,000 rpm in a microfuge). Discard the supernatant.
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7. Repeat this washing procedure two more times for a total of
three washes.

8. Resuspend the final washed cell pellet in 250 ml of coIP buffer.
Do not add Mg++ to this buffer even if it had been used in the
immunoprecipitation.

9. Remove a 25 ml aliquot of the suspension to a separate tube
for the immunoblot analysis described in Section 3.3.6.
Pellet the cells in this aliquot by microcentrifugation for
1 min and resuspend the cells in 20 ml 1.5 X SDS sample
buffer. Store at –20�C until ready for SDS-PAGE. For long-
term storage (>2 days), store at –80�C.

3.3.5. RNA Purification 1. Increase the volume of the reserved immunoprecipitation
supernatant to match that of the immunoprecipitation pellet
sample (�225 ml) by adding co-IP buffer (lacking Mg++).

2. To disrupt the RNPs, add 25 ml 10% SDS and 10 ml 200 mM
EDTA to each pellet and supernatant sample.

3. Add 1 ml GlycoBlue (Ambion) to the pellet sample. The
GlycoBlue enhances the recovery of the small amount of
RNA in this sample by serving as a carrier and by making it
easier to visualize the RNA during the subsequent purifica-
tion steps.

4. Add�250 ml of phenol–chloroform–isoamyl alcohol to each
sample. Vortex thoroughly and separate the phases by
microcentrifugation at 10,000 rpm for 5–10 min at room
temperature.

5. Carefully remove the aqueous phases to new tubes, being sure
to avoid any interface material. Aqueous phase left with the
organic phase at this point will be recovered during the back-
extraction that follows.

6. Back-extract the organic phase and interface by adding 150 ml
of 10 mM Tris–HCl pH 8, 1 mM EDTA, 100 mM NaCl, and
0.25% SDS. Vortex thoroughly and centrifuge as above. Care-
fully remove the aqueous phase and combine with the corre-
sponding aqueous phase from the first extraction.

7. Bring the sodium concentration to�0.3 M by the addition of
�20 ml 3 M NaAcetate. Add 2.5 volumes of ethanol (�1 ml)
to each tube. Vortex. Store at –20�C for at least 1 h. The RNA
can be stored indefinitely at this step.

8. Pellet the RNA by microcentrifugation at 4�C at
>12,000 rpm for 15 min.

9. Carefully pipet off the ethanol. (The RNA pellet from the
immunoprecipitation pellet sample should be blue.) Rinse the
RNA pellets by adding �500 ml 70% ethanol, vortexing
briefly, and microcentrifuging at �12,000 rpm for 10 min.
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Pipet off most of the ethanol. Air dry the pellets by inverting
the tubes on to clean KimWipes for �15 min. Alternatively,
dry the pellets in a Speed Vac, but be careful not to over-dry
the pellets as the RNA may become difficult to resuspend.

10. Resuspend the RNA from the immunoprecipitation pellet
sample in 12 ml RNAse-free water. Resuspend the RNA
from the immunoprecipitation supernatant sample in 36 ml
RNAse-free water. Store at –80�C until ready for the labeling
reaction.

3.3.6. Immunoblot Analysis

to Evaluate the

Immunoprecipitation

Before proceeding with RNA labeling, the recovery of the target
RBP in the immunoprecipitation should be checked by SDS-
PAGE and immunoblot analysis. An equal proportion of the pellet
and supernatant material (e.g., 1/10th of each) and a correspond-
ing amount of the starting extract should be analyzed. If the RBP
comigrates with the IgG heavy chain, then its signal will be
obscured with immunoblot detection methods that use an anti-
IgG antibody as the secondary antibody. The ‘‘One-Step Western
Blot Kit’’ (GenScript) gives excellent results in this situation.

3.4. RNA Labeling RNAs purified from the pellet and supernatant fractions are differ-
entially labeled with fluorescent dyes by using the Micromax ASAP
RNA Labeling Kit (Perkin–Elmer). This procedure labels the gua-
nosine bases in both RNA and DNA, so the RIP-chip protocol
described here can be modified for use with DNA binding proteins
(see Note 5). We routinely label the pellet RNA with Cy5 and the
supernatant RNA with Cy3; an experiment in which chloroplast
RNA labeled with each of the two dyes was competitively hybridized
to a microarray demonstrated that dye-bias is minimal (38).

The oxidation of Cy5 by environmental ozone can severely
decrease the fluorescence yield; even though this problem occurs
only sporadically, it is safest to routinely take the following pre-
cautions. Minimize exposure to ozone by performing all steps
possible in a nitrogen environment: Pour a 100 layer of liquid
nitrogen into a large styrofoam tub. Place a microfuge tube rack
into the tub, positioned so that the tubes will be above and not in
contact with the liquid nitrogen. Open all tubes containing Cy5
and do all manipulations of Cy5-containing solutions in this envir-
onment. Do not leave tubes in the tub for prolonged periods as their
contents will freeze. We suspect that the most ozone-sensitive step
is the first one, when the Cy5 stock solution is opened and the Cy5
reagent is added to the RNA.

One-half of the RNA recovered from the pellet and one-sixth
of the RNA recovered from the supernatant is labeled and used for
hybridization. A smaller fraction of the supernatant sample is used
in order to reduce saturation of array fragments complementary to
the highly abundant rRNAs and tRNAs:
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1. Set heating blocks to 85 and 60�C. Place a plastic tub full of
water into an oven or water bath set to 58�C for microarray
hybridization. Set a Slide warmer (LabLine Instruments) to
�55�C.

2. Pipet 6 ml of each RNA into separate 0.5 ml microfuge tubes.
To each tube add 3 ml of the labeling buffer supplied with the
MicroMax ASAP kit (see Note 6).

3. Add 1 ml of the appropriate fluorescent labeling reagent sup-
plied with the MicroMax kit to each sample. Cy dyes are light
sensitive so return them to their dark, refrigerated storage
area immediately after use.

4. Place the reactions in the 85�C heat block for 15 min (see
Note 7).

5. Transfer tubes to ice and add 2.5 ml ASAP Stop Solution.

6. The RNA is separated from free dye by purification with a
Qiaquick Nucleotide Removal Kit (Qiagen). Add 250 ml Buffer
PN supplied with the Qiagen kit at room temperature. Transfer
the mixture to a Qiaquick spin column. Let it stay for 1 min at
room temperature. Centrifuge for 1 min at 10,000 rpm in a
microfuge. Discard the flow-through (which should contain
only free label).

7. Wash the column by adding 500 ml of Buffer PE supplied with
the column. Centrifuge for 1 min at 10,000 rpm in a micro-
fuge at room temperature. Remove the flow through and
centrifuge the column for one additional minute to remove
excess ethanol.

8. Elute the RNA from the column by transferring the column to
a new tube, adding 40 ml 5 mM Tris–HCl pH 8.3 (see Note 8),
and centrifuging for 1 min at 10,000 rpm in a microfuge.
Repeat the elution step by adding an additional 40 ml of
5 mM Tris–HC1 pH 8.3 to the same column in the same
tube and centrifuging for 1 min at 10,000 rpm. The eluted
supernatant RNA should be visibly pink due to the coupled
Cy3, but some pink dye is typically retained in the column. The
eluted pellet sample is not generally blue to the eye.

9. Concentrate the eluted RNA samples in a Speed Vac (without
heat) until �5 ml remains in each tube. It is important not to
dry the RNA to completion. This step takes �30 min. We use
the labeled RNA immediately for hybridization, but instruc-
tions for long-term storage are provided by the manufacturer
of the labeling reagents.

3.5. Microarray

Hybridization

Hybridization is performed in a microarray hybridization chamber
(Corning #2551). A constant temperature is maintained during
hybridization by submerging the sealed microarray hybridization
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chamber in a water bath in a sealed plastic container. Several hours
in advance, pre-warm the water bath in the plastic container by
placing it in a hybridization oven or water bath set to 58�C:

1. Warm Hybridization Buffer III supplied with the MicroMax
kit to 60�C in a heat block. Add 30 ml of the warm Hybridiza-
tion Buffer III to each labeled RNA sample (�5 ml each).

2. Combine the pellet and supernatant RNA samples (total of
�70 ml). Heat for 3–4 min at 60�C.
During this incubation
(a) Place a LifterSlip Premium Printed Coverglass (Erie Scien-

tific) on top of the microarray, being careful to place the
tape side down so that there is a gap between the slide and
coverslip.

(b) Pre-warm the microarray slide/coverslip assembly and
the microarray hybridization chamber by placing them
onto the slide warmer (set to �55�C).

3. Centrifuge the warmed RNA samples very briefly in a micro-
fuge at room temperature to pellet condensation. Minimize
cooling of the sample (see Note 9). Immediately pipet the
warm RNA onto the pre-warmed array by placing the pipet
tip next to the opening at either end of the coverslip. Pipet
slowly, checking that the sample is being drawn under the
coverslip by capillary action. Place the slide into the microarray
hybridization chamber. Pipet�15 ml of 3X SSC into each of the
two wells in the microarray hybridization chamber; this is
essential to keep the array from dehydrating.

4. Seal the chamber and place it in the 58�C water bath inside the
plastic container. Seal the container and place it in the 58�C
oven or water bath. Incubate overnight.

3.6. Microarray

Washing

1. Fill a slide staining dish with 0.01% SDS, 0.5X SSC (room
temperature).

2. Remove the microarray slide/coverslip assembly from the
hybridization chamber. Place it in the slide holder that
accompanies the slide-staining dish. Do NOT remove the
coverslip manually. Instead, dunk the slide holder gently in
the solution until the cover slip passively detaches from the
slide. The cover slip should fall to the bottom of the dish.

3. Wash 1: Place the staining dish on a rotary shaker and shake
gently (�50 rpm) for 15 min.

4. Wash 2: Transfer the slide in its holder to a new staining dish,
containing 0.01% SDS, 0.06X SSC. Shake at �50 rpm for
15 min.

5. Wash 3: Transfer the slide in its holder to a new staining dish,
containing: 0.06X SSC. Shake at �50 rpm for 15 min.
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6. Tilt the slide to drain droplets, dabbing drops with a KimWipe.
Dry the slide by centrifuging the slide in the slide holder in a
table-top centrifuge for 3 min at 550 rpm. If ozone is a con-
cern, seal the slide in a 50 ml conical centrifuge tube in a
nitrogen atmosphere prior to this centrifugation.

3.7. Microarray

Scanning and Data

Analysis

Scan slides as soon as possible as the fluorescent signals diminish
over time. It is useful to scan at several laser intensities: lower
intensities reduce saturation for highly abundant RNAs (e.g.,
rRNAs and tRNAs) whereas higher intensities can be important
to detect low-abundance RNAs. Scans at 532 nm (which elicits
green fluorescence from Cy3) are typically performed at a PMT
gain between 400 and 550. Scans at 635 nm (which elicits red
fluorescence from Cy5) are typically performed at a PMT gain
between 450 and 650. Store the slides in a 50 ml conical centrifuge
tube covered in foil at 4�C. Slides can be rescanned several times
within a few days with only a small loss of signal. The specifics of
the scanning and data analysis procedures will vary with the array
platform and facilities available. We import the data into GenePix
Pro 6 (Molecular Devices) and filter out low-quality spots as
described in Schmitz-Linneweber et al. (38).

3.8. Validation

of Results by Slot-Blot

Hybridization

Slot-blot hybridization can be used to validate positives to emerge
from the RIP-chip data (see Note 10) and to pinpoint the RNA
sequences associated with an RBP to greater resolution than is
generally possible from the microarray data alone (see Note 11).
RNAs purified from experimental and control immunoprecipita-
tion pellets and supernatants are applied to slot blots and analyzed
by hybridization to probes that correspond to array positives. If the
number of putative positives is small, each of them can be validated
in this way. In large-scale studies, a sampling of the positives
should be validated:

1. Perform immunoprecipitations and extract RNA from the
pellets and supernatants as for the RIP-chip assays.

2. Resuspend the RNA purified from each pellet and superna-
tant in 1200 ml 2X SSPE. 100 ml of the resuspended RNA
samples will be applied to each slot. Heat the RNA to 70�C
for �10 min, while setting up the slot blotter.

3. Cut nylon hybridization membrane (MagnaNylon) to fit the
slot-blot manifold and prewet it in 1X SSPE. Place the mem-
brane into the slot blotter and place under vacuum for�1 min
to dry the membrane slightly.

4. Pipet 100 ml of each RNA sample into a separate slot while
under vacuum. Allow the vacuum to pull the solution through
the membrane. For each validation test, the following samples
should be included: (i) pellet and supernatant RNAs for the
experimental antibody; (ii) pellet and supernatant RNAs for a

Analysis of RNA–Protein Interactions 29



negative control antibody; (iii) total RNA extracted from an
amount of stroma equivalent to that used for each immuno-
precipitation. Store unused RNA at –80�C.

5. Remove the nylon membrane from the slot-blot apparatus
and place the side to which the RNA was applied face up on
Whatman 3MM paper soaked with 1X SSPE. Crosslink the
RNA to the membrane in a UV crosslinker (e.g., Stratalinker
in ‘‘optimal crosslink’’ mode).

6. Air dry the membrane. Prehybridize and hybridize the mem-
brane using probes corresponding to each validation test
using standard conditions for RNA gel blots.

4. Notes

1. All of the chloroplast RBPs we have studied are in the soluble
fraction. However, if the RNP of interest is membrane asso-
ciated, it will need to be stripped from the membrane or the
membrane will need to be solubilized with non-ionic de-
tergent prior to immunoprecipitation. We have begun to
modify this method for maize mitochondrial RBPs. Most
mitochondrial RNAs and ribosomes pellet with the mem-
brane fraction after organelle lysis. We have obtained inter-
pretable RIP-chip data with a mitochondrial lysate generated
by solubilization of the mitochondrial pellet with 1% NP-40.
However, further optimization of this method is likely to be
useful.

2. To increase the resolution of the assay so that the site of RBP
binding within a large RNA ligand can be pinpointed, ribonu-
clease inhibitors should be omitted. This allows endogenous
ribonucleases to reduce the size of the coimmunoprecipitated
RNA molecules so that tethering of sequences distant from the
binding site is reduced. We were able to pinpoint the binding
sites of one RBP to within �100 nucleotides by probing the
RNAs coimmunoprecipitated in this manner with tiled 70-mer
oligonucleotides (38). Hybridization of the coimmunopreci-
pitated RNA to an oligonucleotide tiling microarray and
sequencing of the coimmunoprecipitated RNAs are alternative
methods to identify enrichment peaks to high resolution.

3. The amount of antibody needs to be determined empirically.
Antibodies that have been affinity purified against the antigen
are ideal because the majority of the IgGs will be directed
against the protein of interest, and the low quantity of IgGs
ensures their quantitative precipitation by the Staph A cells.
Titrations should be performed to determine how much
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antibody is needed to recover most of the target RBP in the
immunoprecipitation pellet; 5 ml of affinity-purified antibody
is a good starting point. Crude serum can sometimes be used
successfully. However, the quantity of Staph A cells may have
to be increased to ensure quantitative binding of the IgGs,
and the abundant IgGs may complicate the interpretation of
immunoblot tests of immunoprecipitation efficiency.

4. The stringency of the immunoprecipitation can be increased
by performing the first wash in a different buffer (e.g., coIP
buffer supplemented with 500 mM NaCl or with 0.5% deox-
ycholate). However, these treatments may disrupt the RNPs
of interest.

5. The Micromax ASAP RNA Labeling Kit modifies the N7
position of guanosine with the fluorescent dye in both DNA
and RNA. DNA contributes only a small fraction of the total
signal except for sequences that are not transcribed or that
yield very low abundance RNAs. Thus, the contribution of
DNA to the signal can generally be ignored. However, some
proteins are bound to both RNA and DNA in chloroplast
lysate (unpublished results), and in some cases, it may be
desirable to use this method to identify the binding site of a
DNA binding protein. To ensure that the signal arises from
only RNA or only DNA, DNA or RNA can be removed from
the immunoprecipitated material with DNAse or alkali
hydrolysis, respectively. RNAse A is less effective than alkali
hydrolysis to eliminate the RNA because rRNAs are highly
abundant and structured, so they are resistant to ribonuclease
digestion.

Alkali hydrolysis is performed as follows. Resuspend the
nucleic acids recovered from the immunoprecipitation pellet
and supernatant each in 40 ml of dH2O. Add 10 ml 1 N
NaOH. Incubate at 70�C for 30–45 min. Neutralize the pH
with the addition of 2.1 ml 4.8 N HCl and 2.5 ml 1 M Tris–
HCl pH 7.5. Precipitate the DNA by adding 150 ml EtOH,
placing the tubes at –20�C for at least 30 min, and microcen-
trifugation for 20 min. Resuspend each DNA pellet in 12 ml
dH20 and label this material using the MicroMax kit as
described above for RNA. If the hydrolysis was successful,
the fluorescence associated with rDNA fragments will be
similar to that from other fragments.

Elimination of signal arising from DNA is not necessary in
most cases. However, if it is suspected that the bait protein
interacts with both DNA and RNA, then this step can clarify
the source of the fluorescent signal. After extracting nucleic
acids from the immunoprecipitation pellet and supernatant,
resuspend each sample in 48 ml dH2O. Add 1 ml RNAsin
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(Promega), 6 ml 10X RQ1 DNAse buffer, and 2 ml RQ1
DNAse, RNAse free (1 unit/ml) (Promega, # M6101). Incu-
bate at 37�C for 30 min. Add 140 ml dH2O, 20 ml 10% SDS,
5 ml 0.2 M EDTA, and 4 ml 5 M NaCl. Phenol–chloroform
extract and back-extract as described in Section 3.3.5. Add 1 ml
GlycoBlue to the pellet sample and ethanol precipitate as above.
Resuspend the RNAs derived from the immunoprecipitation
pellet and supernatant in 12 and 36 ml of water, respectively.

6. The volume of RNA in the labeling reactions can be varied.
However, the 10 ml reaction must include at least 2 ml of
labeling buffer.

7. This incubation time determines the proportion of the gua-
nosines that will be labeled. Too short an incubation results in
poor labeling, but too long an incubation yields RNA that is
so heavily modified that it hybridizes poorly. A 15 min incu-
bation is reported by the vendor to be optimal for an mRNA
of ‘‘average’’ length. However, for short RNA fragments, it
may be possible to further optimize this step.

8. A pH above 8 is critical for elution of RNA from the column.
H2O can be effective for elution, but it is prudent to add a low
concentration of buffer to control the pH.

9. For DNA and highly structured RNAs, reheating the sample to
80�C for 30 s may better denature the nucleic acids. This addi-
tional heating also reduces viscosity, allowing the sample to slide
more smoothly under the coverslip on the microarray. The dyes
are heat stable so this additional heating is not detrimental.

10. Real-time PCR or any other quantitative assay could be used
as an alternative.

11. To pinpoint sites of RNA interaction at selected loci, coim-
munoprecipitated RNA can be applied to replicate slot blots
and hybridized with tiled oligonucleotides to detect peaks of
enrichment within a large RNA molecule (38). For such
experiments, ribonuclease inhibitors should not be added to
the immunoprecipitation reaction.
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Chapter 3

Whole-Genome Microarrays: Applications
and Technical Issues

Brian D. Gregory and Dmitry A. Belostotsky

Abstract

DNA microarrays have become a mainstream tool in experimental plant biology. The constant improve-
ments in the technological platforms have enabled the development of the tiling DNA microarrays that
cover the whole genome, which in turn catalyzed the wide variety of creative applications of such
microarrays in the areas as diverse as global studies of genetic variation, DNA-binding proteins, DNA
methylation, and chromatin and transcriptome dynamics. This chapter attempts to summarize such
applications as well as discusses some technical and strategic issues that are particular to the use of tiling
microarrays.

Key words: Tiling arrays, transcriptome, tilemap, Arabidopsis, rice.

1. Overview of DNA
Microarray
Technology

The ever-increasing abundance of available genome sequences
has enabled a wide variety of experimental and/or computa-
tional studies at the whole-genome level. In parallel with the
advances in available sequence data, recent improvements in
microarray technologies have made it feasible to interrogate a
complete genome sequence with arrays through the use of high-
density whole-genome tiling microarrays. These DNA microar-
rays serve as a powerful platform for numerous experimental
approaches aiming to probe, in a single experiment, the depths
of functional and structural information contained within an
entire genome.
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Two general types of high-density microarray platforms are
used most widely. The first type of microarrays consist of short
(up to �100-mer) oligonucleotide probes, which are synthe-
sized directly on the surface of arrays by photolithography
using light-sensitive synthetic chemistry and photolithographic
masks, an ink-jet device, or programmable optical mirrors.
These types of arrays can be further distinguished based on the
type of probes of which they consist. There are the so-called
semi-whole-genome (non-tiling) expression arrays that repre-
sent only the predicted (annotated) features of a genome, such as
exons or splice junctions. On the other hand, the truly whole-
genome tiling arrays (hereafter referred to as WGAs) are
designed to interrogate an entire genome in an unbiased fashion
(1–3). This class of microarrays consists of non-overlapping or
partially overlapping probes that are tiled or spaced at regular
intervals to cover the entire genome from end to end. The
WGAs are already being manufactured with over 6,000,000
discrete features per array, with every feature comprising
millions of copies of the specific probe sequence. For instance,
the Affymetrix1 GeneChip1 Arabidopsis tiling array is a single
array comprised of over 3.2 million perfect match and mismatch
probe pairs (�6.4 million probes total) tiled with 35 base pair
spacing throughout the complete non-repetitive portion of the
Arabidopsis thaliana genome.

The second array platform is made by mechanically printing/
spotting probes, such as amplified PCR products, oligonucleo-
tides, or cloned DNA fragments, onto the glass slides (referred
to from this point as spotted arrays). Spotted arrays generally have
a much lower feature density, usually on the order of approxi-
mately 10,000–40,000 spots per chip, than the in situ synthesized
oligonucleotide arrays. Overall, the high reproducibility, the abil-
ity to synthesize probes representing virtually any sequence of a
finished genome, and the increased feature density have made the
WGAs the preferred platform for whole-genome analysis. More-
over, the ability to utilize relatively short probe lengths combined
with the flexibility of using multiple overlapping probes represent-
ing every region of an organism’s genome makes WGAs an ideal
choice for detecting the broadest range of genomic features
(including even small polymorphisms and splice variants), rivaled
only by the ultradeep sequencing (discussed in this volume in the
chapter by Fox et al.). Furthermore, the specificity gained from
using short probes also allows repetitive regions or gene family
members to be distinguished from one another. Here, we discuss
several approaches using WGAs for transcriptome characteriza-
tion, novel gene discovery, analysis of alternative splicing, mapping
of regulatory DNA motifs using chromatin immunoprecipitation
(ChIP-chip), methylome analysis, and sequence polymorphism
discovery.
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2. Applications of
Whole-Genome
Tiling Arrays
(WGAs)

2.1. Using WGAs for

Transcriptome

Characterization and

Gene Discovery

Although computational methods of gene prediction have steadily
improved over the past decade, such methods alone still do not
enable the accurate determination of the gene structure and/or
identify all transcription units in an organism. Additionally, large-
scale cloning and sequencing of complementary DNA (cDNA)
molecules corresponding to expressed gene products, the tradi-
tional approach for identifying coding regions, often misses very
low abundance transcripts. Furthermore, any given cDNA collec-
tion can be devoid of transcripts that are expressed only in a subset
of tissues and/or in response to a specific physiological or envir-
onmental condition(s). Hence, the WGAs that cover the entire
sequence of the genome of interest represent an attractive alter-
native that largely circumvents such issues. For example, to study
the tissue-specific expression comprehensively, the targets for the
WGA hybridization should be generated from a variety of tissues.
In brief, total RNA samples from the selected set of tissues are used
to make the first strand cDNAs using an oligo(dT) primer contain-
ing a linked promoter for T7 RNA polymerase (T7 RNAP), fol-
lowed by the conversion into the double-stranded form and an in
vitro transcription by T7 RNAP to generate as well as amplify the
biotinylated complementary RNA (cRNA). This protocol, based
on a method devised by Eberwine and colleagues (4), results in an
unbiased representation of all expressed gene products contained
in the total RNA samples, while allowing for an amplification of
the targets in sufficient quantity for hybridization to WGAs.

Remarkably, the very first data sets addressing the transcrip-
tional activity in the various tissues in Arabidopsis using WGAs
identified a large number of novel sites of expression that were
missed by computational gene prediction algorithms and cDNA
collections (2, 5–7). To define such novel sites of transcriptional
activity, the raw data were first pre-processed by dividing the
intensity values for each probe by the median intensity value of
all probes, including the perfect match (PM), mismatch (MM),
and control probes present on the chip, thereby establishing the
background noise level in a given experiment. Then, regions of
transcriptional activity from the array data that did not correspond
to annotated genic units within the most recent genome annota-
tion were classified as novel ‘‘expressed’’ regions if the median
intensity value of the probes in that region fell above a certain
background cutoff threshold (operationally defined through a
metric summarizing the signal emanating from the promoter
regions). This approach gives an unbiased tally of novel genic
units, which is based solely on the probe intensity values for the
regions that fall outside of annotated gene structures.

Tiling Microarray Analyses 41



Interestingly, many of these newly identified transcripts are
expressed from the antisense strand relative to previously anno-
tated transcripts (2), and many of them possess an intriguing
regulatory potential. For instance, this study has revealed an anti-
sense transcript overlapping the 30 end of the mRNA for the key
repressor that regulates flowering time, FLOWERING LOCUS C
(FLC). This antisense transcript may act as a substrate for the
biogenesis of the small interfering RNAs (siRNAs) responsible
for the heterochromatization and subsequent silencing of this
genomic region (8). Additionally, this study has uncovered evi-
dence for the expression in centromeric regions, which were pre-
viously thought to be mostly devoid of active transcription (2).
Thus, WGAs offer an extremely powerful platform for the discov-
ery of novel transcription units.

2.2. Population

Genomic Studies Using

WGAs

The genomic content of individuals from the same species can vary
in sequence as a result of diverse evolutionary processes. Compre-
hensive polymorphism data constitute a powerful resource for
identifying the sequence variants that affect the phenotypic differ-
ences among the individuals (9). Although direct sequencing of
individual populations is the most straightforward method for
amassing the comprehensive polymorphism data, this methodol-
ogy has not yet become cost-effective and widely accessible in most
organisms (10). To circumvent these problems, Clark et al. (11)
applied WGAs for comprehensive polymorphism detection in
Arabidopsis, expanding upon the strategy used earlier to identify
a large fraction of the SNP variation in human and mouse (12, 13).
To this end, Clark et al. targeted 19 wild accessions of A. thaliana,
selected so as to sample the maximal span of genetic diversity. Each
DNA sample was whole genome amplified to generate sufficient
DNA for hybridization, partially fragmented with DNase I, end-
labeled with biotinylated dUTP and ddUTP, and used to probe
WGAs spanning the entire Arabidopsis genome with single base
resolution on both strands, hence interrogating nearly a billion
features per experiment.

This WGA-based approach succeeded in capturing much of
the common sequence polymorphism found in the worldwide
A. thalianapopulation. Furthermore, this data enabled the sys-
tematic identification of the types of sequences that differ
between accessions, as well as provided a high-resolution map
of the genome-wide distribution of polymorphism in this refer-
ence plant. Altogether, more than 1 million non-redundant sin-
gle nucleotide polymorphisms (SNPs) were identified, and �4%
of the genome was identified as being highly dissimilar (or even
deleted) relative to the reference (Col-0) genome sequence.
Curiously, the patterns of polymorphism between the 19 wild
accessions and the reference genome sequence (Col-0) are highly
non-random among the gene families, with genes mediating the
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interaction with the biotic environment exhibiting an exception-
ally high polymorphism levels. Also, regional variation in poly-
morphism was readily apparent at the chromosome-level scale.
This WGA-enabled polymorphism data set provides an unprece-
dented resource for further evolutionary, genetic, and functional
genomic studies.

Two related studies used WGA hybridization of DNA samples
from wild accessions of A. thaliana to measure the genetic diver-
sity and intraspecific polymorphism between individuals (14, 15).
These studies demonstrated that total and pairwise diversity was
higher near the centromeres and the heterochromatic knob
region, which are highly repetitive in nature and are less active
in transcription. Furthermore, the overall diversity between the
Arabidopsis accessions positively correlated with recombination
rate. The combined data from the three studies (11, 14, 15) has
enabled the production of an Arabidopsis genotyping array, which
contains 250,000 SNPs and is commercially available from
Affymetrix. This SNP array assures more than adequate coverage
for the genome-wide association mapping studies in Arabidopsis
(15), thus providing the research community with the framework
for the future in-depth studies of genetic variation in plants. Taken
together, these studies demonstrate that, even in the absence of
sequence data for a number of individuals from the same species,
population genomic studies can still be carried out successfully
using hybridization to WGAs.

2.3. ChIP-Chip Studies

Using WGAs

Transcription represents the first major control point in gene
expression pathways. Although the overall process of transcription
can be regulated by a variety of mechanisms, the most prominent
among them are those mediated by the DNA-binding transcrip-
tion factors and by chromatin structure, which is largely modu-
lated via covalent modifications of the histone N-terminal tails.
Chromatin immunoprecipitation (ChIP) with an antibody specific
to the protein or modification of interest, followed by the hybri-
dization to WGAs of the DNA extracted from the captured chro-
matin fragments (i.e., ChIP-chip), has emerged as a powerful
approach for gaining insight into the genome-wide distribution
of the specific transcription factors or histone modifications
((16–20) and the chapter by Morohashi et al. in this volume).
The quality of the antibody used in immunoprecipitation of the
DNA-bound protein of interest is the major limiting factor of this
technique, because it is critical for achieving an effective enrich-
ment of the protein-bound DNA fragments for hybridization to
WGAs.

In one instructive study of this kind, the antibodies against
the sequence-specific transcription factor TGA2 were used to
map its binding sites genome-wide after the treatment of Ara-
bidopsis plants with the phytohormone salicylic acid (SA) (21).
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The TGA2-crosslinked, immunoprecipitated DNA fragments
were nonspecifically amplified to obtain enough material for
the hybridization, fragmented with DNase I, end-labeled with
biotinylated-ddATP using terminal transferase, and hybridized
to two distinct types of WGAs. The first platform contained
190,000 probes representing 2 kb regions upstream of all anno-
tated genes at a density of seven probes per promoter, while the
second platform represented the entire Arabidopsis genome at a
density of one probe per 90 bases. This study revealed 51
putative binding sites for TGA2, including the only previously
identified (in the promoter of At2g14610 PR-1 gene), as well as
15 putative binding sites that lie outside of presumed promoter
regions. Additionally, when the effect of SA treatment on gene
expression was measured using standard gene expression arrays,
SA-induced transcripts were found to be significantly over-
represented among the genes neighboring the putative TGA2-
binding sites. This example illustrates how the combined use of
WGA platforms for ChIP-chip and gene expression studies can
give important clues as to how sequence-specific transcription
factors govern the key regulatory networks within plant cells.

Covalent modification of histones is another key mechanism
controlling the eukaryotic genome dynamics. Motivated in part by
the evidence that tri-methylation of lysine 27 of histone H3
(H3K27me3) plays critical roles in regulating development in ani-
mals (16, 22, 23) and plants (24–27), WGA-based profiling of the
H3K27me3 in Arabidopsis was undertaken (28, 29). These analyses
revealed, for the first time, that H3K27me3 is a major silencing
mechanism in Arabidopsis that regulates an unexpectedly large num-
ber of genes located in mostly euchromatic regions. Furthermore,
analysis of the H3K27me3 profiles in the relevant mutant back-
grounds suggested that establishment and maintenance of this his-
tone modification is largely independent of other epigenetic
pathways, such as DNA methylation or RNA silencing. Interest-
ingly, the genomic domains marked by H3K27me3 associate almost
exclusively and co-extensively with binding sites for TERMINAL
FLOWER 2/LIKE HETEROCHROMATIN PROTEIN 1, which
is similar to the HETEROCHROMATIN PROTEIN 1 (HP1) of
metazoans and Schizosaccharomyces pombe (28, 29). However, the
genome-wide distribution of H3K27me3 was unaffected in lhp1
mutant, suggesting that TFL2/LHP1 is not involved in the deposi-
tion of this chromatin modification but rather is a part of the
epigenetic mechanism that represses the expression of genes that
are marked with the H3K27me3. Therefore, ChIP-chip experi-
ments with WGAs can be very powerful in revealing the key regula-
tory mechanisms controlling the complex dynamics of the genome
activity in plants. As the number of WGA-based ChIP-chip experi-
ments grows, a much more complete view of the transcriptional
networks controlling plant growth and development will emerge.
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2.4. Characterization

of the Methylome Using

WGAs

DNA methylation is a conserved epigenetic silencing mechanism
involved in many important biological phenomena, including
defense against transposon proliferation, genomic imprinting,
and regulation of gene expression. DNA methylation is a heritable
epigenetic modification that is perpetuated through DNA replica-
tion by DNA methyltransferases (30, 31). DNA methylation
allows to regulate the expression of a number of coding regions
without mutation to the DNA sequence, and it can occur in cis
(i.e., the gene itself is methylated) or in trans(when the methyla-
tion event at another site in the genome regulates the target gene)
(32–34).

In Arabidopsis, DNA methylation is established in all sequence
contexts by DRM1/2, which are homologs of the mammalian
DNMT3a/b de novo DNA methyltransferases (35, 36). DRM1/
2 activity can be directed to a precise genomic location by RNA-
directed DNA methylation (RdDM) system that involves 21–24
nucleotide small RNA (smRNA) generated in a DICER-LIKE3-
dependent manner and acting in concert with ARGONAUTE4
(37–39). On the other hand, DNA methylation within the context
of CpG dinucleotide is stably maintained maintained through gen-
ome replication by the DNA methyltransferase MET1, a homolog
of mammalian DNA methyltransferase1 (40–42). Finally, the plant-
specific DNA methyltransferase CMT3 primarily targets cytosines
in the CHG sequence context (where H = A, C, T) (43).

WGAs allow to comprehensively map the methylome, i.e., the
sum total of the sites of DNA methylation within the Arabidopsis
genome (3, 44–46). In the pioneering study of this kind, an anti-
body against the 5-methyl cytosine was used to generate the target
for interrogating the WGAs spanning the entire Arabidopsis
genome (3). The resulting DNA methylation map reveals that
approximately 19% of the genome is methylated, with the regions
containing the highest density of methylation located in highly
repetitive regions of the genome, such as centromeric heterochro-
matin. Predictably, the highest levels of methylation were seen in
pseudogenes and unexpressed genes, but surprisingly, a consider-
able amount of methylation was distributed in euchromatin. How-
ever, only �5% of expressed genes contained methylation
upstream of their ORFs (promoters), while 33% of the transcribed
regions of these genes were methylated (body methylation), con-
sistent with an earlier smaller-scale study (47). Another surprising
discovery from these WGA studies was that most of the genes that
contain DNA methylation within their transcribed regions are
highly expressed and constitutively active. Furthermore, the dis-
tribution of DNA methylation is clearly different between trans-
posons and genes: while DNA methylation of transposons is
distributed across their entire length, methylation density in
genes was low in the promoter regions, but gradually increased
within the transcribed region and dropped off again in the 30
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flanking sequences. This pattern may indicate negative selection
against methylating the 50 and 30 ends of expressed genes, e.g.,
because of incompatibility with transcription initiation and
termination.

The methyl groups in DNA are not static but can be
removed by the DNA demethylases (48–51). Arabidopsis has
four such DNA demethylases, REPRESSOR OF SILENCING1
(ROS1), DEMETER (DME), DEMETER-LIKE2 (DML2),
and DEMETER-LIKE3 (DML3) (48, 49, 51). DME is required
for genomic imprinting during Arabidopsis embryo develop-
ment (52), while the closely related ROS1 is involved in tran-
scriptional silencing of a transgene (51). WGAs were employed
to globally map the sites of DNA demethylation within the
Arabidopsis genome, via comparing the methylome in WT and
mutant plants lacking three of the DNA demethylases (ROS1,
DML2, DML3) (53). It appears that 179 loci are actively
demethylated by one or all of these enzymes in Arabidopsis,
and interestingly, demethylation in the coding regions primarily
occurs at both the 50 and 30 ends, i.e., in a pattern opposite to the
overall distribution of DNA methylation. This suggests that
DNA methylation is highly dynamic and that the process of
demethylation may act to protect the genes from potentially
deleterious methylation events. Taken together, these first
methylome studies provide important insights into the nature
as well as the function of this important epigenetic mark.

3. Technical
Considerations
Regarding the WGA
Analyses

3.1. Sequence-Specific

Probe Effects

Although tiling microarrays are very powerful, as illustrated in the
preceding sections, several limitations and important technical
considerations must be taken into account. One major technical
constraint that is inherent to the concept of WGAs lies in the
severely limited freedom of choice in designing the probes. This
limitation translates into the widespread sequence-based probe
effects. For example, �20% of probes located entirely within a
known (i.e., experimentally proven) exon exhibit twofold or
higher difference in the signal intensity relative to the average
intensity of their two neighboring probes located within same
exon (54). While in principle such probe behavior can result
from alternative splicing or from cross-hybridization to other
transcribed sequences that map to unrelated genomic locations,
in reality the most significant source of such effects is the variability
in thermodynamic properties of the probes themselves, as dictated
by their respective sequences.
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Several approaches have been used in an attempt to correct for
such unevenness in the probe behavior. One alternative is to tackle
the problem early, i.e., at the stage of the design of the array. For
instance, maskless tiling arrays manufactured by NimbleGen are
composed entirely of isothermal probes, whereby the length of
each molecule is varied in order to attain a consistent melting
temperature (usually set at 76�C). Although the isothermal arrays
should produce uniform probe behavior, this advantage comes at a
price of the decrease in the feature density as compared to the one
afforded by the Affymetrix platform, as well as reduced resolution.
Furthermore, while the theoretical design of isothermal probes is
typically based on the nearest-neighbor behavior of the respective
oligonucleotides in solution, in practice the behavior of the array
probes is strongly influenced by additional factors, such as steric
hindrance on the microarray surface, probe–probe interaction, and
secondary structure formation (55, 56).

An alternative strategy to address the unevenness in the probe
behavior relies on statistical methods. Such approaches extend the
earlier efforts to model the sequence-specific probe behavior for
gene expression microarrays (57, 58). For example, MAT (model-
based analysis of tiling arrays) predicts the baseline probe behavior
by considering the 25-mer sequence and copy number of all
probes on a single Affymetrix tiling array (59). This approach
standardizes the probe value through the probe model, eliminat-
ing the need for sample normalization. As opposed to estimating
probe behavior from multiple samples (60–62), MAT can standar-
dize the signals of each probe in each array individually. MAT
approaches perform particularly well in ChIP-chip applications
that measure the genome-wide transcription factor binding and
can detect with high accuracy the enriched regions from a single or
multiple ChIP samples. This is due to the fact that most probes in
ChIP-chip analyses measure only unspecific binding, because tran-
scription factors usually bind only to a small fraction of the gen-
ome. One variation on the MAT theme is to use an a priori
sequence-dependent physical model of probe-specific intensity
bias (occurring primarily due to unspecific binding), instead of
estimating it from the data (63).

Finally, the third alternative, which may hold a particular appeal
to experimentalists, is to empirically calibrate the behavior of the
probes on the array against a suitable reference sample. For example,
in the global mapping study of transcriptional activity in yeast, none-
quivalencies in the probe behavior were corrected via experimental
RNA/DNA hybridization-based model, by correcting for the back-
ground as well as adjusting the signal of each probe by sequence-
specific parameters, which was estimated from a calibration set of
genomic DNA hybridizations (64). The following normalization
methods were evaluated: (1) dividing RNA signal by DNA signal
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and then taking base 2 logarithm; (2) background-subtracting the
RNA signal, dividing it by DNA signal, then applying variance
stabilizing normalization (vsn, log base 2); and (3) in addition to
method 2, dropping the 5% weakest probes in the DNA hybridiza-
tion. Method 3 yielded the highest gain in signal to noise ratio,
which was estimated as follows. Noise was estimated from the
median of absolute differences between each pair of probes on the
Crick strand of chromosome IV whose start points were three inter-
mediate probes apart. Signal was obtained from the difference
between 99% and 1% quantiles of all these probes. The optimal
method of normalization for the individual probe behavior increased
the signal/noise ratio on average by 1.7-fold.

3.2. Distinguishing the

Signal from Noise

Although the issue of distinguishing the signal from noise is not
unique to the whole-genome microarrays in particular, it is parti-
cularly important in the case of WGAs, because as opposed to all
other types of microarrays analyses, WGAs assume no underlying
gene models or annotations. Hence, a radically different strategy is
required to make the decisions on how to make the ‘‘present’’ calls
(54). In the early studies, positive probes were called based on a
probe signal cutoff (65), and the genomic regions containing a
significant number of positive probes were designated as transfrags
(transcribed fragments). At present, two major alternative strate-
gies to identify the regions of significant signal on WGAs are based
on either the sliding window approaches or on structured change
point detection algorithm (66, 67). The latter approach aims to
segment the genome using dynamic programming in an unbiased
fashion into regions with different expression levels in such a way
that the probe signals are similar within each region. Such methods
are reported to give more accurate estimates of change point
locations, as well as depend on fewer user-defined parameters
(64). However, the sliding window-based approaches remain
more common.

The authors of this chapter have experience with TileMap
(60). This package was originally developed for ChIP-chip ana-
lysis, but it can be used to analyze other types of genome-wide
data, such as that of the entire transcriptome or methylome. The
distinctive feature of TileMap is that it treats every probe as a
separate entity, rather than computing a metric for a particular
gene. Therefore, rather than generating a gene-level measure-
ment of intensity changes, TileMap enables an unbiased identifi-
cation of those genomic regions that demonstrate significantly
up- or down-regulated hybridization between two different sets
of arrays. An additional advantage of this algorithm is that it goes
beyond the ability of just making the ‘‘present’’ calls, but rather
allows complex multiple-condition comparisons (e.g., mutant
1 > WT > mutant 2).
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In the first step of the TileMap procedure, a t-like test statistic
is computed separately for each probe on the array, using a hier-
archical empirical Bayes model to pool information from all probes
across the array. On the other hand, during the calculation of the
conventional t-statistic, only the estimate of the probe’s own
standard deviation is accounted for. This significantly increases
the sensitivity of the analysis in the very common circumstances
when there are only a small number (2–3) of replicates available
for each condition. In the second step, the test statistics of probes
within a genomic region are used to infer whether the region is of
interest or not (i.e., whether it shows transcriptional activities of
interest). TileMap offers two different ways to do this: users can
choose to combine neighboring probes by using either a hidden
Markov model (HMM) or a moving average method (MA).
Finally, TileMap uses unbalanced mixture subtraction (UMS) to
provide approximate local false discovery rate (lfdr) estimates
for MA and model parameters for HMM. Compared with the com-
monly employed permutation test, UMS performs better for complex
multiple-sample comparisons, such as mutant 1 > WT > mutant 2.
Importantly, while UMS estimates the lfdr for a null hypothesis H0:
‘‘not (mutant 1 > WT > mutant 2)’’, permutation test usually can
only provide lfdr for a null H0: ‘‘mutant 1 = WT = mutant 2’’.

3.3. Primary vs.

Secondary Effects in

Tiling Microarray

Experiments

One cautionary point is warranted concerning the widespread
practice of using microarrays to reveal the expression changes in
various mutant backgrounds compared to WT. In the case of
constitutive mutants, the differentially expressed regions represent
the sum of primary and secondary effects of inactivating the respec-
tive cellular factor. Distinguishing the direct from secondary con-
sequences of a given mutation on the transcriptome can be
challenging and requires special consideration during the design
stage and/or extensive follow-up experimental and/or bioinfor-
matic analyses. While this problem is by no means unique to WGA-
based studies, it can become particularly acute in this case because
of the sheer volume of data that such studies generate.

While there is no single universal solution to this problem,
several considerations may be helpful. One of these concerns the
analyses of transcription factors, which often tend to regulate other
transcription factors, forming branched networks. For the sake of
example, if several sets of genes (regulons) are coordinately affected
upon inactivating the factor X, one can query the public microarray
repositories (e.g., www.weigelworld.org/resources/microarray/
AtGenExpress) and/or specialized transcription factor databases
(e.g., AGRIS, arabidopsis.med.ohio-state.edu) for the transcription
factors(s) that may directly control the expression of these gene sets.
A reasonable hypothesis then would be that the effect of X on these
otherwise disparate gene sets is indirect and mediated by its regulat-
ing the expression of these transcription factors(s).
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A more radical approach to the problem of secondary effects
would be to attempt to bypass this issue altogether. In one exam-
ple, this was achieved by putting the transcription factor under
study under exclusively posttranslational control, via fusing it to
the rat glucocorticoid receptor (GR). Simultaneous treatment of
the transgenic line expressing such a chimeric factor by the acti-
vating glucocorticoid dexamethasone and the translational inhi-
bitor cycloheximide then led to the transcriptional induction of
the direct target genes only, while the expression of any second-
ary effects was blocked (68). However, the most generally applic-
able tools allowing to filter out secondary effects are conditional
mutants. In this case, one can apply the restrictive condition at
will and monitor the real-time progression of the ensuing
changes in the transcriptome by microarray analysis of the early
timepoints of the response. In this case, the expectation is that
the inactivation of the transcription factor should have a very
rapid effect on its immediate target promoters, comparable with
inactivation of general transcription. On the other hand, a con-
siderably longer period of time would be required to develop
secondary effects, because such effects must be preceded by sig-
nificant alterations in the mRNA as well as in the protein levels of
the immediate downstream targets of the transcription factor in
question.

Unfortunately, temperature-sensitive mutations, which are
widely used for this type of analysis in microorganisms, are rather
rare in plants. However, the authors have been successful in imple-
menting an inducible RNAi (iRNAi) for creating a conditional
knockdown of the subunits of the exosome complex in Arabidop-
sis. The exosome is an essential and conserved RNA-degrading and
RNA-processing complex that has multiple and diverse RNA tar-
gets that are yet to be comprehensively defined in any eukaryote.
An iRNAi system was engineered by expressing the constructs
containing the segments of the exosome complex subunits
RRP4 or RRP41as a pair of inverted repeats separated by an
intron, under the control of an estradiol-regulated chimeric trans-
activator XVE (69). Growing such exosome iRNAi plants on
estradiol-containing media induced the RNAi-mediated knock-
down of RRP4 (rrp4iRNAi) or RRP41 (rrp41iRNAi) mRNA,
resulting in the growth arrest and subsequent death of seedlings.
Importantly, growth arrest was preceded by the highly specific
molecular phenotype associated with the defective processing of
the 5.8S ribosomal RNA, which is highly specific to exosome
malfunction (70), and is never observed in WT plants exposed to
estradiol (neither is growth inhibition). Thus validated condi-
tional iRNAi knockdown system was subsequently used in con-
junction with WGAs to comprehensively define the Arabidopsis
exosome targets (71). In contrast, WGA analysis of a constitutive
loss of function mutant of one of the subunits of this complex
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produced massive amounts of secondary effects, even though this
particular mutant had little if any phenotype at the whole-plant
level (71).

3.4. Inhibition of RNA

Degrading/Processing

Enzymes as a General

Strategy to Uncover the

Hidden Dynamics in the

Transcriptome

Numerous studies during the past few years revealed the existence
of the vast ‘‘dark matter’’ in eukaryotic transcriptomes, in the form
of noncoding (nc) RNAs with unknown function (72). Although
there is much debate as to what fraction of these ncRNAs have
biological targets vs. merely represent spurious transcriptional
activity (73), it is important to comprehensively understand such
events. In this regard, it is instructive to consider the finding of the
‘‘deeply hidden’’ layer in the Arabidopsis transcriptome that is only
detectable under the conditions of exosome knockdown (71).
Such RNAs are largely composed of intergenic noncoding tran-
scripts that emanate from the repetitive, heterochromatic regions
of the genome. Apparently, these transcripts are tightly down-
regulated by the constitutive exosome activity to the extent that
they are virtually undetectable under normal conditions. On a
more general note, the exosome is but one among many diverse
RNA processing/degrading activities in the cell, and hence a
logical extension of this strategy would be to undertake a systema-
tic identification and categorization of the transcriptome-wide
consequences of modulating the activities of a wide variety RNA
decay and processing factors.

While in hindsight this approach may seem intuitive, in prac-
tice such analyses have been conducted only rarely, and mostly in
the context of specialized studies focusing on specific class of
transcripts and/or specific aspects of RNA metabolism. In one
such example, He et al. used microarrays to investigate the RNAs
in Saccharomyces cerevisiae that are stabilized upon mutating the
key components of the nonsense-mediated mRNA decay (NMD)
pathway – a specialized mechanism dedicated to the degradation of
mRNAs containing the premature stop codons (74). In another
approach to identify the transcripts directly regulated by NMD,
the same group examined which RNAs become rapidly down-
regulated upon restituting the NMD pathway in the NMD-
defective cells, using conditional promoter (75). These combined
studies succeeded in defining a near-comprehensive core set of
cellular transcripts regulated by NMD, many of which have not
been previously known, e.g., such as those RNAs that fail to splice
and escape into the cytoplasm, mRNAs with abnormally long 30

UTRs, mRNAs with upstream open reading frames, mRNAs that
are subject to leaky scanning resulting in the use of out-of-frame
initiator codons, mRNAs translated viaþ1 frameshifting, bicistro-
nic mRNAs, transcripts encoded by pseudogenes, as well as those
emanating from the transposable elements or from their LTR
sequences. In another study, a conditional promoter was used to
inhibit the expression of an essential subunit of the nuclear RNase

Tiling Microarray Analyses 51



P in yeast, combined with the WGA-based monitoring of the
ensuing changes in the transcriptome during the time course of
depletion (76). This study led to the discovery of 73 novel
ncRNAs, many of them antisense relative to the previously anno-
tated ORFs – a surprisingly large number for the best-annotated
eukaryotic genome. We therefore propose that manipulating the
activities of the key factors of plant RNA metabolism may be a
productive approach for mining the depths of the dynamic plant
transcriptomes.
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Chapter 4

Manipulating Large-Scale Arabidopsis Microarray
Expression Data: Identifying Dominant Expression Patterns
and Biological Process Enrichment

David A. Orlando, Siobhan M. Brady, Jeremy D. Koch, José R. Dinneny,
and Philip N. Benfey

Abstract

A series of large-scale Arabidopsis thaliana microarray expression experiments profiling genome-wide
expression across different developmental stages, cell types, and environmental conditions have resulted in
tremendous amounts of gene expression data. This gene expression is the output of complex transcrip-
tional regulatory networks and provides a starting point for identifying the dominant transcriptional
regulatory modules acting within the plant. Highly co-expressed groups of genes are likely to be regulated
by similar transcription factors. Therefore, finding these co-expressed groups can reduce the dimension-
ality of complex expression data into a set of dominant transcriptional regulatory modules. Determining
the biological significance of these patterns is an informatics challenge and has required the development of
new methods. Using these new methods we can begin to understand the biological information contained
within large-scale expression data sets.

Key words: Clustering, microarray, gene expression, enrichment, gene ontology.

1. Introduction

1.1. Microarray

Technology, Large-

Scale Data Sets, High-

Resolution Data

A microarray is a rectangular slide with thousands of short
stretches of DNA chemically bonded to it. The AffymetrixTM

Arabidopsis ATH1 22 K microarray chip contains pieces of
DNA, known as probes, corresponding to approximately
22,000 genes, and has become the quasi-standard in Arabidopsis
expression profiling (1). Using this technology, two large data
sets exist that have profiled expression at two different scales.
The AtGenExpress data set contains three series of expression
profiles, with each series examining a different set of cells or
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conditions. The developmental timeline series contains profiles of
expression in a different organ or developmental stage (2). The
hormone series contains profiles of expression in seedlings in response
to various hormones over time (3). Finally, the abiotic and biotic
stress series contains profiles of expression from seedlings in response
to biotic stimuli like pathogens and to environmental abiotic stimuli
(4). In total, the AtGenExpress data set profiles the expression of
approximately 22,000 genes in roots, shoots, seedlings or cell culture
under many conditions. A second large data set contains fewer experi-
ments, but contains expression profiles at much higher resolution
than the AtGenExpress data set, with 19 different experiments profil-
ing expression of nearly all cell types within the Arabidopsis root, in
addition to 13 developmental time points (5–7). Together, these data
sets contain massive amounts of expression information; however,
extracting biological insights from this data is a real challenge. A
useful approach is to look for groups of genes that are expressed in
similar patterns across the different conditions. Expression similarity
often implies co-regulation and can be used to identify transcriptional
regulatory modules. Thus finding groups of genes with common
patterns of expression is a good starting point for extracting biological
insight from large expression data sets.

1.2. Identifying

Dominant Expression

Patterns and

Associated Genes

The informatic task of grouping genes with similar expression pat-
terns is commonly referred to as clustering. Clustering can be more
rigorously defined as the task of separating a large set of elements
(genes) into distinct subsets (groups/clusters of genes) such that all
elements in a subset share a common feature (similar expression
pattern). The similarity between two elements is defined by a dis-
tance metric, such as Euclidean distance or Pearson correlation.
There are a wide variety of clustering algorithms which use different
strategies to separate the full set of elements into subsets, with the
most common being the hierarchical and K-means algorithms.

There are advantages and disadvantages to using one clustering
algorithm over another. The K-means algorithm is useful for finding
subsets with many members, but can force elements into subsets
where they may not belong simply because all the other subsets are
worse matches. Furthermore, the K-means algorithm begins with
randomly chosen cluster centers, and different runs of the algorithm
can result in subsets containing different members. Finally, K-means
clustering will split the full set of elements into exactly K subsets,
which is user-determined and may not be optimal. In contrast,
hierarchical methods are good at identifying relationships between
single elements or small groups but it is often difficult to determine
the proper subsets as the set of elements grows large.

We present a method which utilizes both of these algorithms in
an effort to identify a set of unique dominant expression patterns
within a large gene expression data set. We define a ‘‘dominant
expression pattern’’ to be a pattern that has strong support (i.e.,
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many genes exhibit the pattern) within the data. Thus our method
does not try to necessarily try to find all the different expression
patterns present in a data set, only those which represent large groups
of co-expressed genes. The method utilizes a variant of the K-means
algorithm, fuzzy K-means (8), to create a preliminary set of groups,
from which initial patterns can be defined. Using a K-means-based
method ensures that the initial set of patterns will be ‘‘dominant’’,
since the K-means algorithm will preferentially create subsets with
many members. We then use hierarchical clustering, and its strengths
in identifying relationships between a small number of elements, to
cluster and collapse initial patterns that are similar to each other,
resulting in a final set of unique dominant expression patterns. Once
these unique dominant expression patterns have been identified,
clusters of genes associated with each of the patterns can be
assembled and analyzed for biological significance.

1.3. Analyzing Clusters

of Genes for Biological

Significance:

Biological Information

Resources

Once a cluster has been obtained, a second challenge is to deter-
mine the biological significance, if any, of this group of co-
expressed genes. The ‘‘biological significance’’ of a gene or a
group of genes can be subjective. It could mean the biochemical,
developmental, or physiological process that the gene’s product is
involved in. Alternatively, if one is interested in the role of a gene in
the context of transcriptional regulatory modules, which is parti-
cularly important when monitoring the output of the modules
using microarray analysis, then biologically significant information
could include cis-regulatory elements present within the upstream
or downstream regulatory regions of the gene. If the gene is a
transcription factor, it could be useful to know its transcription
factor class and its binding site preference. Literature is often a
good source for mining this type of information, and several con-
sortia are responsible for mining literature for experiments that
identify these biological features for individual genes and then
storing these annotations in a database. The most popular of
these consortiums is the Gene Ontology or GO consortia. Gene
Ontology categories are controlled vocabulary terms that describe
the biological process, molecular function, or cellular component
that is associated with a gene in many model organisms (9). The
Arabidopsis Information Resource (TAIR) curates the literature
and maintains the Arabidopsis GO category database (10). Several
databases exist that define and catalog Arabidopsis transcription
factors as well as identified cis-regulatory elements. These data-
bases include the database of Arabidopsis transcription factors
(DATF), PLACE (plant cis-acting DNA regulatory elements),
and the Arabidopsis gene regulatory information server (AGRIS)
(11–13). Microarray expression analysis has become a useful tool
for experimenters performing Arabidopsis research, and many pub-
lications exist that use microarrays to identify genes associated with
particular pathways. For example, some of these studies have
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identified genes associated with the M-phase or S-phase of the cell
cycle, genes expressed during root hair morphogenesis, or genes
associated with primary or secondary cell wall biosynthesis (14–17).
These studies often identify associated genes using rigorous statis-
tical testing; however, TAIR and other resources do not currently
compile genes associated with biological processes via microarray
analysis in their databases. We have also mined the literature for
these types of studies and have included them as a source of useful
biological information to infer biological significance (7).

1.3.1. Testing for

Enrichment: Multiple

Hypothesis Testing

These consortia and statistical resources are rich in information.
When given a set of genes exhibiting a similar expression pattern
one can search this set for obvious relationships among the genes.
For example, if one finds that several genes that are known to act
in a particular biochemical pathway are coordinately expressed, it
suggests that this biochemical pathway is of particular importance
in the cell-type, developmental stage, or environmental condition
experimentally tested. In essence, one can test for the enrichment
of a biological feature within a data set. However, given the vast
number of potential biological features, the statistical significance
of enrichment when testing each individual hypothesis is of
utmost importance. A common statistical method used to deter-
mine the significance of feature enrichment is the hypergeometric
distribution (18). The hypergeometric distribution tests whether
any feature or variable is found in a list at a frequency greater than
would be expected by chance and calculates a P-value. This
method has been used in particular to identify GO term enrich-
ment and cis-regulatory enrichment in large-scale gene expres-
sion analysis (19, 20). See Note 17 for alternative methods to
determine the significance of these biological features.

1.3.2. Choice of Correct

Background Distribution of

GO Categories

Enrichment testing entails determining the significance of a
number of categories present within a list of interest relative to
the number of times these categories are found in a back-
ground list. Therefore the choice of correct background is
imperative. Current web-based methods exist that test for
enrichment of GO categories, including the Generic GO
Term Finder and ATHENA (19, 20). These methods consider
the background as all genes annotated with a GO category. In
the context of microarray analysis, however, we must consider
that our background is the set of genes being tested for
enrichment, that is, all genes present on the microarray
being used. Not all genes annotated in the Arabidopsis gen-
ome are present on the ATH1 22 K microarray. We have
therefore developed a method that tests enrichment relative
to only the genes whose expression we are testing (i.e., those
present on the ATH1 microarray chip).
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2. Materials

1. R Software: R is a free software environment designed for
statistical computing and is available for download from
http://www.r-project.org/(21). The code for generating
the set of unique dominant patterns is written for R.

2. R Scripts (Table 4.1)
a. Code for generating initial set of clusters.

b. Code for identifying unique dominant expression patterns
and their associated genes.

c. <http://www.arexdb.org/software.jsp>

3. Background Chip: ATH1 Chip: Tab-delimited text file con-
taining all AffymetrixTM probe sets in one column and all
corresponding AGI chromosome locus identifiers in a second
column.

Singleton Chip: Tab-delimited text file containing all Affy-
metrixTM probe sets which map to only a single AGI chromo-
some locus identifier in one column and corresponding AGI
locus identifiers in a second column.

4. Biological Information Files
a. GO Annotation File: Tab-delimited text file containing

AGI locus identifiers in the first column, corresponding
gene models in a second column, GO category descrip-
tions in a third column, and GO IDs in a fourth column.

b. Array Annotation File: Tab-delimited text file contain-
ing AGI locus identifiers in one column, and biological
processes annotated to these genes as determined by
mining the literature in a second column.

c. Transcription Factor Family File: Tab-delimited text
file containing transcription factor AGI locus identifiers in
one column and the family that these transcription factors
belong to in a second column. The transcription factor family
file was created by querying three transcription factor data-
bases: DATF, AGRIS, and Riken (7, 11, 13, 22). If a tran-
scription factor was annotated as belonging to a particular
family in two of three databases, it was included in this list.

d. Query List: Tab-delimited text file containing the AGI
locus identifiers in the first column. This is the list that
will be tested for biological enrichment relative to the
background.

5. Hypergeometric Distribution: http://jakarta.apache.org/
commons/math
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Table 4.1
Documentation of, and R source code for, software for clustering, pattern identification and
gene assignment. Each portion of the table documents a particular section of the software
and includes a short text description, with important features and considerations high-
lighted, and the relevant R source code (within the black boxes). The sections are presented
in the order they should be run during an analysis. The source code can be downloaded from
http://www.arexdb.org/software.

Code for Fuzzy K-Means clustering

User specified parameters
These seven parameters need to be set before each run of the method.

Parameter Type Description
inputFile string The name of the file with the tab-delimited expression data. See note 4.1.1 for

required file format.
minExpFilter decimal This parameter is the minimum expression a gene must have in order to pass the

low expression filter. Setting this to FALSE will skip the low expression filtering.
minVarFilter integer This parameter controls what percentage of genes, ranked by variance, are re-

moved. A value of 75 will filter out the bottom 75% of the genes (thus retaining
the top 25%). Setting this to FALSE will skip the low variance filter.

kChoice integer This integer sets the initial number of patterns found by the fuzzy K-means
algorithm. See note 4.1.8.

fuzzyKmemb decimal This sets the membership exponent parameter in the fuzzy K-means algorithm.
Read the cluster package documentation before adjusting this.

alreadyLog2 TRUE/FALSE This flag tells the method if the data needs to be log2-fold transformed before
computing the distance between each gene. Set this to TRUE if the input data
is already in terms of fold change. See note 4.1.5.

methodResultFile string The name of the rData file where the results of the clustering will be stored.
diagnosticFile string The name of the output file where diagnostic and status information will be

printed.

inputFile <- "inputData.txt"
minExpFilter <- FALSE
minVarFilter <- 50
kChoice <- 15
fuzzyKmemb <- 1.05
alreadyLog2 <- FALSE
methodResultFile <- "patternIdent_result.rDump"
diagnosticFile <- "clustering_diagnostic.txt"

Reading the input data
This code loads the required cluster package and reads the expression data. It also creates some book-keeping variables.
library(cluster)
removeLowE <- 0
removeLowV <- 0
dateRun<- date()
cat("Starting Fuzzy K-Means clustering on ",dateRun,"\n",file=diagnosticFile)
expressionData <-read.table(file=inputFile,sep="\t",header=TRUE)
rownames(expressionData)<-expressionData[,1]
expressionData <- expressionData[,2:ncol(expressionData)]
cat("Expression data read from ",inputFile,"\n",file=diagnosticFile,append=TRUE)
cat("\t",nrow(expressionData)," genes with ",ncol(expressionData)," observations.\n",file=diagnosticFile,append=TRUE)
expDataFiltered <- expressionData
filterSettings <- paste("Filter Settings:\n\tInput File = ",inputFile,sep="")

Running low expression filter
This is the code for the low expression filtering. If minExpFilter is not set to FALSE it will remove any genes which are not
expressed above minExpFilter in any measurement (column).
cat("Removing low expressed genes - ",file=diagnosticFile,append=TRUE)
filterSettings <- paste(filterSettings,"\n\tLow Expression Filter = ",sep="")
if(is.numeric(minExpFilter)){

keep <- c(1:nrow(expDataFiltered))[apply(expDataFiltered,1,max)>=minExpFilter]
removeLowE <- nrow(expDataFiltered)-length(keep)
expDataFiltered <- expDataFiltered[keep,]
cat("Done\n",file=diagnosticFile,append=TRUE)
filterSettings <- paste(filterSettings,minExpFilter," (",removeLowE," genes removed)\n",sep="")

}else{
cat("Skipped\n",file=diagnosticFile,append=TRUE)
filterSettings <- paste(filterSettings,"FALSE\n",sep="")

}

(continued)
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Table 4.1 (continued)

Running low variance filter
This is the code for the low variance filtering. If minVarFilter is not set to FALSE it will remove the bottom minVarFilter%
of genes ranked by variance.
cat("Removing low varying genes - ",file=diagnosticFile,append=TRUE)
filterSettings <- paste(filterSettings,"\tLow Variance Filter = ",sep="")
if(is.numeric(minVarFilter)){

lowVarCut <- quantile(apply(expDataFiltered,1,var),probs=(minVarFilter/100))
keep <- c(1:nrow(expDataFiltered))[apply(expDataFiltered,1,var)>=lowVarCut]
removeLowV <- nrow(expDataFiltered)-length(keep)
expDataFiltered <- expDataFiltered[keep,]
cat("Done\n",file=diagnosticFile,append=TRUE)
filterSettings <- paste(filterSettings,minVarFilter,"% (",removeLowV," genes removed)\n",sep="")

}else{
cat("Skipped\n",file=diagnosticFile,append=TRUE)
filterSettings <- paste(filterSettings,"FALSE\n",sep="")

}
cat(filterSettings,file=diagnosticFile,append=TRUE)

Normalizing the data
This will log2 transform the expression data if necessary. If alreadyLog2 is set to TRUE the data will not be log2 transformed.
cat("Log2 Transforming expression data - ",file=diagnosticFile,append=TRUE)
if(!alreadyLog2){

expDataFiltered[expDataFiltered==0] <- 1e-10
expDataFiltered <- log2(expDataFiltered/apply(expDataFiltered,1,mean))
expressionData[expressionData==0] <- 1e-10
expressionData <- log2(expressionData/apply(expressionData,1,mean))
cat("Done\n",file=diagnosticFile,append=TRUE)

}else{
cat("Skipped\n",file=diagnosticFile,append=TRUE)

}

Building the distance matrix and clustering
This code will first build a R dist object, distanceMat, which holds the distances between each gene and every other gene. The
distance between gene i and j is 1−ρ(i↪j)

2 , where ρ(i↪ j) is the Pearson correlation between i and j. This distance calculation
ensures that genes which are perfectly correlated (ρ(i↪ j) = 1) have a distance of 0, and genes which are perfectly anti-correlated
(ρ(i↪ j) = −1), have a distance of 1. See note 4.1.7 about using a different distance metric. The dist object is then used in
the fanny implementation of the fuzzy K-means algorithm. The result of the clustering (initClust), the complete expression
data (expressionData), and the filtered (and potentially log2 transformed) expression data (expDataFiltered), and other book-
keeping variables are then saved into the resultFile file.
cat("Building distance matrix for clustering - ",file=diagnosticFile,append=TRUE)
distanceMat<-as.dist((1-cor(t(expDataFiltered),method="pearson"))/2)
cat(" Done\n",file=diagnosticFile,append=TRUE)

fuzzyKSettings <- paste("Fuzzy K-Means settings:\n\tK = ",kChoice,"\n\tmemb.exp = ",fuzzyKmemb,sep="")
fuzzyKSettings <- paste(fuzzyKSettings,"\n\tmaxit = ",(nrow(expDataFiltered)*4),"\n",sep="")

cat("Running fuzzy K-means to produce ",kChoice," clusters from ",nrow(expDataFiltered)," genes.",file=diagnosticFile,append=TRUE)
cat(fuzzyKSettings,file=diagnosticFile,append=TRUE)
cat("\n!!! This may take a long time to complete. !!!\n",file=diagnosticFile,append=TRUE)

initClust <- fanny(distanceMat, kChoice, diss = TRUE, memb.exp= fuzzyKmemb,maxit=nrow(expDataFiltered)*4)
cat("Done clustering!\nSaving results to ",methodResultFile,"\n",file=diagnosticFile,append=TRUE)
save(file=methodResultFile,expressionData,initClust,expDataFiltered,filterSettings,fuzzyKSettings, dateRun)
cat("Done. Initial clustering completed.\n\n",file=diagnosticFile,append=TRUE)

(continued)
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Table 4.1 (continued)

Code for Pattern Identification & Gene Association

User specified parameters
These are the eight parameters which need to be set by the user for the method to identify, collapse and assign genes to patterns.

Parameter Type Description
autoSelectClusterCutoff TRUE/FALSE This flag tells the method whether or not to determine the clusterCutoff param-

eter automatically. If set to FALSE the user needs to specify the clusterCutoff
parameter.

clusterCutoff decimal This is the minimum probability required of a gene belonging to a cluster in
order for that gene to be used in building that clusters initial pattern. Ignored if
autoSelectClusterCutoff is TRUE.

patternSimilarityCutoff decimal Maximum distance between patterns, under which the patterns are collapsed.
When using Pearson correlation, 1-patternSimilarityCutoff corresponds to the
Pearson correlation value above which patterns are collapsed.

pearsonCutoff decimal This sets the Pearson correlation above which a gene is assigned to a final domi-
nant expression pattern.

methodResultFile string The filename of the rDump result file from the fuzzy K-means clustering.
userPatternInputFile string The filename of the user created patterns to be appended to the set of patterns

(note 4.1.11). This file should be in the same format as the input expression data.
If FALSE, no user patterns will be appended.

patternOutputFile string The filename of the tab-delimited output file, holding the log2 transformed dom-
inant expression patterns.

groupOutputFile string The filename of the tab-delimited file containing the assignment of genes to each
pattern.

diagnosticFile string The filename of the file where diagnostic and current status information will be
printed.

autoSelectClusterCutoff <- TRUE
clusterCutoff <- 0.4
patternSimilarityCutoff <- 0.1
pearsonCutoff <- 0.85
methodResultFile <- "patternIdent_result.rDump"
userPatternInputFile <- FALSE
patternOutputFile <- "patternOutput.txt"
groupOutputFile <- "genesToPatterns.txt"
diagnosticFile <- "patternIdent_diagnostic.txt"

(continued)
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Table 4.1 (continued)

Subroutines used in finding and collapsing similar patterns, assigning
genes, and writing output
These four subroutines are used by the method to create the initial cluster patterns (getClustProfiles), collapse similar pat-
terns (makeCollapsedProfiles), calculate the distance from each gene to each pattern (correlateGenesToProfiles), and write
a table of genes assigned to each pattern (writeMemberList).

getClustProfiles <- function(expDataIn,clustIn,clusterCutoff){
numClusters <- ncol(clustIn$membership)
clustProfiles <- matrix(data=0,ncol=ncol(expDataIn),nrow=numClusters)
for(i in 1:numClusters){

genesInClust <- c(1:nrow(expDataIn))[clustIn$membership[,i]>=clusterCutoff]
if(length(genesInClust)>0){

if(length(genesInClust)>1){
clustProfiles[i,]<-as.numeric(apply(expDataIn[genesInClust,],2,median))

}else{
clustProfiles[i,]<-as.numeric(expDataIn[genesInClust,])

}
}

}
whichCluster <- c(1:numClusters)[apply(clustProfiles,1,var)>0]
clustProfiles <- clustProfiles[apply(clustProfiles,1,var)>0,]
return(list(profiles=clustProfiles,whichClust=whichCluster))

}

makeCollapsedProfiles <- function(expDataIn,clustProfsIn, clusterCutoff,grouping,origClust,clustIn){
collapsedProfiles <- matrix(data=0,ncol=ncol(expDataIn),nrow=max(grouping))
for(i in 1:max(grouping)){

inClust <- c(1:length(grouping))[grouping==i]
if(length(inClust)==1){

collapsedProfiles[i,]<-clustProfsIn[inClust,]
genesInClust <- c(1:nrow(expDataIn))[clustIn$membership[,origClust[inClust]]>=0.4]

}else{
cat("\tCollapsing profiles ",paste(inClust,collapse=","),"into new profile ",i,"\n")
clustLookAt <- origClust[inClust]
genesInClust <- c(1:nrow(expDataIn))[apply(clustIn$membership[,clustLookAt],1,max)>= clusterCutoff]
collapsedProfiles[i,]<-apply(expDataIn[genesInClust,],2,median)

}
}

return(collapsedProfiles)
}

correlateGenesToProfiles <- function(expDataIn,profilesIn){
profileCor <- matrix(data=0,ncol=nrow(profilesIn),nrow=nrow(expDataIn))
for(i in 1:nrow(profilesIn)){

profileCor[,i] <- apply(expDataIn,1,cor,y=profilesIn[i,])
cat("\tCorrelating genes to profile ",i," out of ",nrow(profilesIn),"\n")

}
rownames(profileCor)<-rownames(expDataIn)
colnames(profileCor)<-rownames(profilesIn)
return(profileCor)

}

writeMemberList <- function(patternCor,minDist,fileOut){
maxSize <- max(apply(patternCor>=minDist,2,sum))
tempMat <- matrix(data="",ncol=ncol(patternCor),nrow=maxSize)
colnames(tempMat)<-colnames(patternCor)
for(i in 1:ncol(tempMat)){

geneList <- rownames(patternCor)[patternCor[,i]>=minDist]
if(length(geneList)>0){

tempMat[1:length(geneList),i]<-geneList
}

}
write.table(file=fileOut,tempMat,sep="\t",quote=FALSE,row.names=FALSE,col.names=colnames(tempMat))

}

(continued)
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Table 4.1 (continued)

Creation of initial patterns
This code loads the results from the fuzzy K-means clustering and will build an initial set of patterns. If autoSelectClusterCutoff
is TRUE, then the method will set clusterCutoff to a value at which the average gene is assigned to one cluster. The
method then finds genes which do not belong to any cluster above a probability of clusterCutoff and flags those genes. The
getClustProfiles subroutine then builds the initial set of patterns by finding the median (by column) expression pattern of all
genes assigned to each cluster above clusterCutoff. The patterns are then stored in the clustProfiles variable.
cat("Starting Pattern Identification & Gene Assignment\n",file=diagnosticFile)
load(clusterResultFile)
if(autoSelectClusterCutoff){

clusterCutoff <- initClust$membership[sort(initClust$membership,index.return=TRUE,decreasing=TRUE)$ix[nrow(initClust$membership)]]
}
cantAssignGenes<-(apply(initClust $membership,1,max)<clusterCutoff)
goodGenes<-(apply(initClust $membership,1,max)>=clusterCutoff)
initClust$cluster[cantAssignGenes]<-0
initClust$membership[cantAssignGenes,]<-0
cat("Number of genes assigned to a cluster above ",clusterCutoff," =",file=diagnosticFile,append=TRUE)
cat(sum(goodGenes),"/",length(initClust$cluster),"\n",file=diagnosticFile,append=TRUE)
cat("Number of genes not assigned to a cluster above ",clusterCutoff," =",file=diagnosticFile,append=TRUE)
cat(sum(cantAssignGenes),"/",length(initClust$cluster),"\n",file=diagnosticFile,append=TRUE)
cat("Generating inital set of patterns.\n",file=diagnosticFile,append=TRUE)
clustProfiles <- getClustProfiles(expDataFiltered,initClust,clusterCutoff)
whichClusters <- clustProfiles$whichClust
clustProfiles <- clustProfiles$profiles

Collapsing similar patterns
This code takes the initial set of patterns and collapses those that are similar to each other. The method calculates the distance
(1-Pearson correlation) between all the patterns and then performs single-linkage hierarchical clustering using that information.
The resulting tree is cut are a height of patternSimilarityCutoff, and patterns which are in the same cluster are collapsed in the
makeCollapsedProfiles subroutine. The final set of unique dominant expression patterns is then written to patternOutputFile
in the same format as the input expression data (see note 4.1.13 for output formats).
cat("Calculating distances between each pattern.\n",file=diagnosticFile,append=TRUE)
profileCor <- cor(t(clustProfiles))
diag(profileCor)<-NA
hClust <- hclust(as.dist(1-profileCor),method="single")
collapseGrp <- cutree(hClust,h=patternSimilarityCutoff)

cat("Collapsing similar patterns.\n",file=diagnosticFile,append=TRUE)
finalProfiles<-makeCollapsedProfiles(expDataFiltered,clustProfiles, clusterCutoff ,collapseGrp,whichClusters,initClust)
rownames(finalProfiles)<- paste("Pattern_",1:nrow(finalProfiles),sep="")
colnames(finalProfiles)<-colnames(expDataFiltered)
colnames(finalProfiles)[1] <- paste("\t",colnames(finalProfiles)[1],sep="")
if(is.character(userPatternInputFile)){

cat("Adding user defined patterns from \"",userPatternInputFile,"\".\n",file=diagnosticFile,append=TRUE)
userPatterns <- read.delim(file=userPatternInputFile,sep="\t",header=TRUE)
tempFinal <- matrix(data=0,ncol=ncol(finalProfiles),nrow=nrow(finalProfiles)+nrow(userPatterns))
tempFinal[1:nrow(finalProfiles),]<-finalProfiles
tempFinal[(nrow(finalProfiles)+1):nrow(tempFinal),]<-as.matrix(userPatterns[,2:ncol(userPatterns)])
rownames(tempFinal) <- c(rownames(finalProfiles),userPatterns[,1])
colnames(tempFinal) <- colnames(finalProfiles)
finalProfiles <- tempFinal

}
cat("Writing patterns to output file.\n",file=diagnosticFile,append=TRUE)
write.table(file=patternOutputFile,finalProfiles,quote=FALSE,sep="\t")

Assignment of genes to patterns
This code takes the final set of unique dominant expression patterns and calculates the pearson correlation between each gene
used in the clustering (see note 4.1.12 for assigning genes not used in the clustering) to each pattern. This information is passed
to the writeMemberList subroutine, and it creates a file (groupOutputFile), which is table where each column is a pattern, and
each row contains the name of a gene which pearson correlates to that patterns above pearsonCutoff. Some genes may appear
in multiple columns, and some may not appear at all. Finally the method deletes some bookkeeping and temporary variables
and stores the rest of the results of the analysis in the rDump file specified by methodResultFile.
cat("Assigning genes to patterns.\n",file=diagnosticFile,append=TRUE)
geneToPatternCor <- correlateGenesToProfiles(expDataFiltered,finalProfiles)

cat("Writing gene to pattern output file.\n",file=diagnosticFile,append=TRUE)
writeMemberList(geneToPatternCor,pearsonCutoff,groupOutputFile)
rm(cantAssignGenes,goodGenes,profileCor,hClust,collapseGrp)
save(file=methodResultFile,list=ls())
cat("Pattern Identification and Gene Assignment completed.\n",file=diagnosticFile,append=TRUE)
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6. Q-Value Test: John Storey’s Q-value Method (23): http://
faculty.washington.edu/jstorey/qvalue/

7. Biological Enrichment Software: http://www.arexdb.org/
software

3. Methods

3.1. Identifying Unique

Dominant Expression

Patterns

3.1.1. Pre-clustering Data

Filtering

Filtering input expression data is an important step in recovering
dominant expression patterns of interest (see Note 1 for expected
input data format). Is it often the case that when an expression data
set profiles only a subset of tissues or organs (i.e., the root is a
subset of the whole plant) there will be many genes which are not
expressed above a reasonable cutoff in any measurement in the
subsystem being analyzed? When looking for unique dominant
expression patterns, these genes should be removed. Additionally,
there is often another subset of genes that are expressed uniformly
across all the measurements. These genes are also not useful in
identifying novel dominant expression patterns and should be
removed (see Note 2 for more information about flat expression
patterns). Filtering the expression data is useful for three reasons:
(1) it removes genes that are not informative in identifying domi-
nant expression patterns, (2) genes with relatively flat expression
profiles (i.e., all-off or non-varying) can behave poorly when com-
pared using the Pearson correlation distance metric (see Note 3)
and it reduces the size of the input to the clustering step which will
decrease runtime of the fuzzy K-means algorithm. The rigor of this
filtering can be adjusted in the code provided to suit the user’s
needs. Finally, if the input data set has already been filtered such
that all the genes in the input data display some characteristic of
interest, these filtering steps do not need to be applied.

3.1.2. Data Clustering

3.1.2.1. Normalization via

log2 Transformation

When using non-fold normalized data (i.e., one-color Affyme-
trixTM arrays), it is important to normalize the data by a log2

transformation after filtering (see Note 5 for definition of log2

normalization). This ensures that individual genes are compared
on the basis of the shape of their expression patterns and not the
absolute levels (see Note 4 regarding comparing absolute levels).
Two-color spotted arrays are usually measured in the form of a fold
ratio between the observation and a control, and thus usually do
not need to be log2 normalized.

3.1.2.2. Choice of Distance

Metric

The code provided in Table 4.1 calculates the similarity between
expression profiles via Pearson correlation (see Note 6 for the
relationship between distance and similarity measures). Pearson
correlation is used because it is sensitive to the shape of the
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expression profile while being relatively amplitude insensitive.
Using other distance metrics is possible, but requires modification
of the code (see Note 7).

3.1.2.3. Fuzzy K-means

Clustering

The clustering method used in the provided code (Table 4.1) is an
implementation of fuzzy K-means algorithm described in Chapter 4
of Kaufmann and Rousseeuw (8). The exact method is named
‘‘FANNY’’ and is implemented in the ‘‘cluster’’ package in R (24).
The implementation, as it is used in the code, takes five parameters as
input: x, k, diss, memb.exp, and maxit. The x variable contains the
distance of each gene from every other gene. The k variable is the
number of initial clusters desired (see Note 8). The diss variable
should always be set to TRUE, indicating that the x variable contains
distances. The memb.exp and maxit variables set the membership
exponent and maximum iterations used by the implementation.
Details on all the parameters can be found in the help files contained
within the cluster R package, and can be accessed by typing ‘‘?fanny’’
in the R environment. The FANNY implementation returns a large
object, with many components, all of which are detailed in the
package help files. Our method uses only the output contained
within the membership component of the returned object. The
membership component is a matrix with one row for each gene
and one column for each of the K clusters. The value in each cell is
the probability that the gene belongs to a given cluster. We use this
probability information to determine which genes belong to multiple
clusters and which genes do not match well to any cluster.

3.1.3. Creating the Initial

Patterns

The initial set of patterns is generated by taking the column-wise
median of the expression profiles for all genes truly belonging to
each cluster. The notion of truly belonging to a cluster is where the
probability information in the membership component of the
FANNY output is incorporated. Our method uses a probability
cutoff variable, clusterCutoff, which is used to determine which
genes belong to which cluster. A gene belongs to a cluster if the
membership component of the fuzzy K-means clustering reports a
probability of that gene being in that cluster at or above the value
in the clusterCutoff variable. The code provided (Table 4.1) allows
a user to set this cutoff themselves (autoSelectClusterCutoff ¼
FALSE) or determine it automatically (autoSelectClusterCutoff
¼ TRUE). If the clusterCutoff is determined automatically, the
method finds a cutoff at which the average gene belongs to one
cluster. Often, the cutoff will be below 0.5, allowing for some
genes to truly belong to multiple clusters, and thus be included in
the creation of multiple initial patterns. If another clustering
method were used, the initial set of patterns could simply be the
mean expression profile of all the genes assigned to each cluster by
the algorithm (see Note 9 for information on how to use a different
clustering algorithm).
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3.1.4. Collapsing Similar

Patterns

The final step in creating the set of unique dominant expression
patterns is to collapse similar patterns created in the step above.
Collapsing similar patterns corrects for the tendency of the K-
means clustering algorithm to split large, potentially similarly
expressed groups of genes and ensures that one has obtained
the full complement of distinct, dominant expression patterns.
The distances between each of the patterns are computed using
the same distance metric used in the initial clustering (Pearson
correlation in the code provided). These distances are then used
to hierarchically cluster the initial set of patterns. The resulting
tree is cut at a user-defined cutoff (stored in the patternSimilar-
ityCutoff variable), and the patterns within the resulting clusters
are collapsed together. In this method, we have used single-
linkage clustering as the default. Using single-linkage hierarchi-
cal clustering ensures that all patterns whose distance is less than
the cutoff are collapsed together (see Note 10). The default value
in the code is patternSimilarityCutoff ¼ 0.1, which ensures that
all patterns with a Pearson correlation at or above 0.9 (or a
Pearson correlation ‘‘distance’’ of 0.1) are collapsed together.
When multiple patterns are collapsed the new pattern is the
column-wise median of all the collapsed patterns. After all the
patterns are collapsed, the resulting rows are a set of unique
dominant expression patterns.

3.2. Assignment of

Genes to Clusters

Given this set of unique dominant expression patterns, is it
useful to have lists of genes which exhibit each respective
expression pattern? See Note 11 for how to add additional
user-defined patterns before gene assignment. Using the same
distance measure employed to identify the dominant expres-
sion patterns, our method calculates the distance from each
gene to each pattern. The code provided only examines those
genes that were used in K-means clustering algorithm as
genes of interest, but this can be modified (see Note 12).
Given the calculated distances, the groups of genes assigned
to a pattern are defined as the set of genes with a distance
below a certain cutoff (or above a certain cutoff if measuring
using a similarity measure like Pearson correlation). The
default value in the code is pearsonCutoff ¼ 0.85, which
associates a gene with a pattern if the gene Pearson correlates
to the pattern at or above 0.85. The advantage of doing
assignment in this manner is that it allows genes to belong
to more than one pattern if it is similar to multiple patterns,
or, not be assigned to any pattern (25). The method pro-
duces a table with a set of genes assigned to each pattern.
Having the complete set of genes matching an expression
pattern is very desirable, especially when using this set to
look for biological process enrichment. See Note 13 for
details of the method output formats.
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3.3. Biological Process

Enrichment

3.3.1. Process Background

Chip

We utilize two types of background sets in our analysis. The first is
the ‘‘ATH1 chip’’ and the second is the ‘‘Singleton Chip’’. (See
Section 2.3 and Note 15 for additional details regarding the
differences between these two backgrounds. See Note 16 for
information regarding nuclear, chloroplast- and mitochondrial-
encoded genes.) This file contains a list of AffymetrixTM probe
set identifiers in the first column and a list of their corresponding
AGI locus identifier in a second column (see Note 17 for informa-
tion regarding version releases of these conversions).

3.3.1.1. Singleton Chip

Preprocessing

The singleton chip is first processed by removing AffymetrixTM

probe set identifiers that are mapped to multiple AGI locus iden-
tifiers. In the first column any rows with AffymetrixTM probe set
identifiers that contain <_x_at> or <_s_at> are removed (these
identifiers indicate that a probe set matches to multiple loci). In
the second column, any rows with multiple AGI locus identifiers
<;> are also removed, in cases where <_x_at> or <_s_at> nota-
tion was not indicated (see Note 15).

3.3.1.2. Background Chip

Reverse Mapping

Since we are testing for enrichment of features that are annotated
to AGI locus identifiers, we must obtain a count of all AGI chro-
mosomal loci found on the microarray chip. For ease of counting,
the first and second columns are reversed. The number of AGI
locus identifiers in the first column is then counted and stored for
use in the hypergeometric distribution test.

3.3.2. Process Gene

Descriptor Map (GO

Annotations/Array

Annotations/ TF family)

3.3.2.1. GO Annotation File

Preprocessing

The GO annotation file requires additional processing relative to
the array annotation file and transcription factor family file. The GO
annotation file contains four columns: <AGI ID>, <model>,
<description>, and <GO ID>. The second column, <model>,
is disregarded in our analysis (see Note 14 for additional details).

3.3.2.2. Gene Descriptor

Map

As mentioned in Introduction, we only test for the enrichment of
features relative to the appropriate background. We therefore filter
the GO annotation list, array annotation, and transcription factor
family lists so that they only contain the AGI locus identifiers
present on the selected background chip. These filtered files are
now named the <gene descriptor map> file. In the case of GO
categories and array annotations, an AGI locus identifier can have
multiple terms annotated to it; therefore, an AGI locus identifier
can appear multiple times in the left column.

3.3.3. Process Enrichment

Relative to Gene Descriptor

Map

The query list is read in to the program. If multiple AGI locus
identifiers are found in a single row, these locus identifiers are
removed, as they were most likely obtained from an <_s_at> or
an <_x_at> AffymetrixTM probe set to AGI locus identifier
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conversion, and will bias the biological interpretation of results. The
gene descriptor map is now also read into the program. A set of
commands determines the measurements needed for input into the
hypergeometric distribution test. For all further sections the term
GO ID is interchangeable with <array annotation> or <TF
family>. These methods can also be used for enrichment of any
other biological features, including the enrichment of cis-elements.

Measurements needed for input into the hypergeometric dis-
tribution set:
A. The subset of AGI locus identifiers that are in common

between these two files, and their associated GO IDs are fil-
tered. For GO ID x, the number of AGI locus identifiers
associated with it in the query list is counted. This is re-iterated
for each GO ID present in the query list.

B. For GO ID x, the number of AGI locus identifiers associated
with it in the background chip.

C. The number of AGI locus identifiers present on the query list.

D. The number of AGI locus identifiers present on the back-
ground chip.

3.3.4. Hypergeometric

Distribution Test

These four numbers are provided to the hypergeometric dis-
tribution test script (see Section 2.7). The resulting P-values
are then used to assess the false discovery rate (FDR) (see
Note 18). We choose to accept a significant enrichment of
P �10–3, although use of the FDR as a threshold is also
recommended. Since we only consider enrichment in our query
list, we only consider lists where the percentage of the query
GO count/query set size is >background count/background set
size.

3.3.5. Q-Value Testing To assess the FDR we use John Storey’s QVALUE program (23).
This program runs in the R software environment. See Section 2.1
for the direct link to this software. P-values must be stored in a tab-
delimited text format to be read into QVALUE.

4. Notes

1. The input data should be a tab-delimited text file with each
row being a gene and each column being a numeric measure-
ment. The first column should contain a unique string iden-
tifying the gene in each row. The first row should contain
unique strings identifying the measurements (tissues, devel-
opmental zones, etc.). Missing values should be reported as
‘‘NA’’.
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2. The method has the ability to remove genes that are not
varying across the measurements, either because they are
constitutively on or off. As stated in Section 3.1.1, the reason
for removing these genes is 3-fold: (1) there can be a very
large number of these flat profiles that can obscure other
patterns when performing the initial clustering, (2) certain
distance metrics, such as Pearson correlation can behave erra-
tically when comparing flat profiles (see Note 4), and (3) it
reduces the size of the input to the clustering step which will
decrease runtime. Additionally, if the user feels that the flat
pattern is important, particularly in the cases where genes are
ubiquitously expressed, it is easy to manually add it to the set
of patterns and thus does not need to be computationally
modified (see Note 11). Even if the user decides not to add
a flat pattern into the final set, identifying genes which are
expressed ubiquitously in all measurements can be biologi-
cally informative and could be another useful analysis. These
genes can be identified by selecting genes with low variance
and which are expressed above a given cutoff in every
measurement.

3. Pearson correlation is a common measure of similarity
between two genes. To a first approximation, two genes are
well correlated if their expression patterns have the same
overall shape across multiple experiments, even if the ampli-
tude changes of the individual curves are different. As an
example, two genes will be well correlated if they are both
upregulated, even if one is upregulated 10-fold and the other
is only 2-fold. However, this amplitude insensitivity is proble-
matic when one of the genes has a profile that is nearly flat. A
gene with a flat profile often has small unimportant up/down
movements simply due to measurement noise. The problem
arises from the fact that you can get large positive (or nega-
tive) Pearson correlations between noisy flat genes and other
genes when the tiny random up/down movement in the
noise happens to coincide with the biologically significant
up/down movement of the other gene. In short, Pearson
correlation is a very useful measure, but one should be careful
when using it with genes whose expression changes are mostly
due to measurement noise.

4. Some microarray platforms, such as the AffymetrixTM plat-
form, will report gene expression in terms of absolute units as
opposed to the fold change relative to a control which is
reported for spotted two-color arrays. These absolute mea-
surements are very useful as they can reveal the different
biological concentrations of mRNA transcripts in the cell.
However, the basal concentrations of two genes can be very
different even though the genes are part of the same process.
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This can make the co-expression of the two genes difficult to
detect because of this difference in scale. Normalization using
log2 transformation can help alleviate this problem.

5. In order to make the genes with expression patterns of very
different amplitudes easily comparable, it is suggested that
you log2 transform the expression data. The log2 normaliza-
tion of a gene is done by dividing each of the gene’s individual
measurements by its mean value across all measurements, and
then taking the log base 2 of that number. After the normal-
ization, a value of 0 corresponds to a original measurement
that was exactly the mean expression, a value of 1 corresponds
to a original value that was twice or the mean expression, and a
value of –2 corresponds to a original value that was 4-fold
lower than the mean. This normalization is useful because it
places all genes on the same measurement scale, even if they
are expressed at very different levels in the cell.

6. Most clustering algorithms require a notion of distance, or
dissimilarity, between two objects, where a larger number
denotes larger distance or dissimilarity. The code provided
uses Pearson correlation, which is a measure of similarity, and
thus the method needs to convert from the similarity measure
to distance. It does this by subtracting the Pearson correlation
value from 1. This means that a high Pearson correlation value
(1 ¼ perfect correlation) will be converted to 0 (small dis-
tance) and a low Pearson correlation value (–1¼ perfect anti-
correlation) to 2 (high distance). The method then divides
this number by 2, simply to scale the distances between 0 and
1. One needs to be careful when using similarity measures in
conjunction with distance measures, to ensure that the inter-
pretation of large and small values is consistent.

7. The code provided uses Pearson correlation as its distance
metric. Other distance metrics can be substituted in its place,
by changing the code at the appropriate places. Other dis-
tance metrics may be appropriate if one wants to define simi-
larity not on the basis of correlation, but rather on the basis of
absolute level (Euclidean distance would be appropriate), or
other criteria for which a different measure is more suitable.
When choosing a distance metric, be sure to consider whether
or not the data should be normalized by log2 transformation.
It is also important to consider how the patterns should be
created and how similar patterns are collapsed (the column-
wise median is usually appropriate, but may not be for some
specialized applications).

8. The choice of K when using a K-means algorithm is very
important. Although our method seeks to mitigate the
impact of the choice by collapsing similar patterns, the
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choice of K should still be considered carefully. Even
though there are methods such as the gap statistic (26)
which can be helpful in suggesting a good K, finding the
correct choice of K can often be more of an art than a
science. We suggest you start with a relatively high K
initially. A good rule of thumb is to use a K 25% higher
than the number of patterns you expect to find. It is also
useful to run the method with higher and lower choices
of K and compare the final sets of patterns.

9. The code provided uses a fuzzy K-means algorithm and its
associated output to determine which genes should be used to
build the initial patterns. The advantage of the fuzzy K-means
algorithm is that the output can be used to detect genes that
should be used in multiple initial patterns and genes that
should not be used at all. You can use any clustering algorithm
of your choice and rely on the hard cluster assignments to
build the initial set of patterns. You will need to modify the
code (in particular the getClustProfiles subroutine) to take
the output of your clustering method and correctly build the
initial set of patterns.

10. Linkage refers to the way distance between two clusters of
elements is calculated. There are three common types of
linkage used in hierarchical clustering: single, complete, and
average. The distance between two clusters using single link-
age is the minimum distance between any element in cluster 1
and any element in cluster 2. For complete and average link-
age, the distance between two clusters is the maximum and
mean distances between any element in cluster 1 to any ele-
ment in cluster 2, respectively. Single linkage is used in the
code provided.

11. If the user wishes, they can import an additional file of
expression patterns that will be added to the final set of
patterns. The user can define these patterns in a tab-delim-
ited text file in the same format as the input data (see Note 1)
except the first column will contain a unique pattern name.
The user can then include them by setting the userPattern-
File parameter to the name of that file. The method assumes
the data in this file are in the same format and scale as the
other patterns (pre-log2 transformed is necessary) and that
the column order is the same. For adding in a flat pattern,
the expression values could be set to all zeros. The user
should be careful about adding in multiple additional pat-
terns, because these patterns will not be collapsed. If the user
chooses a distance metric which is sensitive to amplitude,
then precise choice of values in the pattern file should be
considered carefully.
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12. The code currently calculates the correlation between each
gene in the expDataFiltered variable and each pattern. The
expDataFiltered variable contains all the genes and their expres-
sion which was used in the fuzzy K-means clustering. To
associate a different set of genes, simply pass a different matrix
of expression to the correlateGenesToProfiles subroutine. One
common change would be to replace the line in the code:
‘‘geneToPatternCor<- correlateGenesToProfiles(expDataFiltered,

finalProfiles)’’ with
‘‘geneToPatternCor<- correlateGenesToProfiles(expressionData,

finalProfiles)’’. That would calculate the association between
all genes in the input data to all the patterns. If one wishes to use
a different subset, modify the code so that the subroutine is
passed a matrix (in the same format as expressionData) con-
taining only genes of interest.

13. The method will create three files. One file is an .rDump file
(methodResultFile), which is a file that can be read into R
using the load() command. This contains the information
needed for and produced by the method and are not human
readable. The method also produces a tab-delimited text file
(whose filename is user specified with the patternOutputFile
parameter), which has the same general format as the input
expression data, but each row contains the expression for a
dominant expression pattern, as opposed to a single gene.
Finally, the method also produces a tab-delimited text file
(whose filename is user specified with the groupOutputFile
parameter) which defines the sets of genes associated with
each pattern. Each column corresponds to a different pattern
(with the pattern name defined in the first row), and each row
contains the name of a gene which is associated with that
pattern.

14. We download the GO annotation file from TAIR and modify
it into the user format described. First, as described in Note 16,
we only include nuclear-encoded genes.We then create, for each
chromosome a list of AGI locus identifers, the corresponding
gene models, GO description, and GO ID information as
described in Section 2.4.1. When the GO IDs are associated
with corresponding AGI locus identifiers (see Section 3.3.3),
only unique AGI locus identifiers are considered in our counts
for the hypergeometric distribution test. A number of gene
models can exist for each AGI locus identifier (gene). These
gene models can describe the protein-coding sequence, non-
coding molecular species, or alternately spliced variants (10)
associated with each gene. Although we ignore these models
when we use this GO annotation file (see Section 3.3.2.1),
after obtaining a statistically significant feature using the
hypergeometric distribution test, one should cross-reference
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the gene model sequence associated with each significant fea-
ture, with the corresponding probe sequences on the ATH1
22 K microarray chip to determine which gene model is most
appropriate for further consideration.

15. As probe sets annotated to multiple genes can obscure the
biological relevance of enrichment, in the majority of cases,
we choose to use the ‘‘Singleton Chip’’.

16. In our analysis we have chosen to only consider nuclear-
encoded genes. However, the ATH1 chip file does contain
probe sets which map to mitochondrial- or chloroplast-
encoded genes, and the GO annotation file which is available
for download from TAIR also contains ontologies associated
with mitochondrial- and chloroplast-encoded genes. We
therefore remove these genes from the ATH1 chip file (and
indirectly the singleton chip file), and from the GO annota-
tion file. If one chooses to consider also enrichment among
these mitochondrial- and chloroplast-encoded genes, one
must include these in both the ATH1 chip file and the GO
annotation file for proper comparison.

17. TAIR periodically releases new annotations of the Arabidopsis
genome (10). With each new version of the Arabidopsis gen-
ome, a new file describing the AffymetrixTM probe set to AGI
locus identifier conversion is also released. We recommend
using the most recent version of this release, although it is
important to always use the same version for all rounds of data
analysis when considering enrichment in multiple gene lists.

18. Alternate methods used to identify significance of enriched
features are described in (27).

19. In essence, when we consider enrichment of biological fea-
tures, we are testing the enrichment of each feature at a time,
and thus, we are testing multiple hypotheses. False discovery
rate (FDR) is a statistical method used in multiple hypotheses
testing to correct for multiple comparisons (18). The FDR
controls the expected proportion of incorrectly rejected null
hypotheses (type I errors) (23). The Q-value of a test mea-
sures the proportion of false positives incurred (the FDR)
when that particular test is called significant.
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Chapter 5

Applications of Ultra-high-Throughput Sequencing

Samuel Fox, Sergei Filichkin, and Todd C. Mockler

Abstract

The genomics era has enabled scientists to more readily pose truly global questions regarding mutation,
evolution, gene and genome structure, function, and regulation. Just as Sanger sequencing ushered in a
paradigm shift that enabled the molecular basis of biological questions to be directly addressed, to an even
greater degree, ultra-high-throughput DNA sequencing is poised to dramatically change the nature of
biological research. New sequencing technologies have opened the door for novel questions to be
addressed at the level of the entire genome in the areas of comparative genomics, systems biology,
metagenomics, and genome biology. These new sequencing technologies provide a tremendous amount
of DNA sequence data to be collected at an astounding pace, with reduced costs, effort, and time as
compared to Sanger sequencing. Applications of ultra-high-throughput sequencing (UHTS) are essen-
tially limited only by the imaginations of researchers, and include genome sequencing/resequencing, small
RNA discovery, deep SNP discovery, chromatin immunoprecipitation (ChIP) and RNA immunoprecipi-
tation (RIP) coupled with sequence identification, transcriptome analysis including empirical annotation,
discovery and characterization of alternative splicing, and gene expression profiling. This technology will
have a profound impact on plant breeding, biotechnology, and our fundamental understanding of plant
evolution, development, and environmental responses. In this chapter, we provide an overview of UHTS
approaches and their applications. We also describe a protocol we have developed for deep sequencing of
plant transcriptomes using the Illumina/Solexa sequencing platform.

Key words: Ultra-high-throughput DNA sequencing, HTS, UHTS, microread, sequencing,
transcriptome, 454, Illumina, Solexa, SOLiD.

1. Introduction

Over the past few decades, Sanger DNA sequencing has dramati-
cally changed the nature of biological research and ushered in the
era of functional genomics. To an even greater extent, ultra-high-
throughput sequencing (UHTS) is redefining the genome and the
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ways in which genomes are studied. Recent technological devel-
opments in UHTS platforms have reduced the time, cost, com-
plexity, and effort involved in sequencing projects, while providing
an unprecedented amount of sequence information. UHTS has
numerous applications such as in genome and targeted resequen-
cing, metagenomics, deep SNP discovery, whole-genome de novo
sequencing, gene expression profiling, ChIP/RIP studies, and
transcriptome analysis (1, 2). Furthermore, the massive amount
of sequence data generated by UHTS is already having a major
impact on the field of bioinformatics through the development of
new assembly algorithms and new concepts in data storage. With
the newfound ability to conduct genomic studies on a truly global
scale, our knowledge of genomes, gene structure, function, and
regulation will advance markedly.

In the post-genomic era we are now able to more thoroughly
analyze and characterize gene regulation, structure, and function
in a global and high-throughput manner. UHTS provides the
experimental tool that will make it possible to study all aspects of
the genome as interconnected parts of the whole. For example,
UHTS approaches will fundamentally alter the ways in which
biologists analyze the gene expression networks guiding plant
development and environmental responses from many directions
including transcriptional regulation and post-transcriptional RNA
processing. Ultra-high-throughput sequencing of the direct DNA
and RNA targets of transcription factors and RNA-binding pro-
teins, respectively, will be crucial to the elucidation of complex
gene regulatory networks. Transcriptome analysis is of particular
importance in the elucidation of the role of gene regulation in
plant development. With UHTS, we are now able to empirically
annotate transcription units in a plant genome and then interro-
gate their spatial and temporal expression patterns with unprece-
dented resolution and dynamic range.

1.1. Sanger/Dideoxy

Sequencing

Sanger/dideoxy sequencing technology revolutionized biology
and launched the genomics era. Sanger sequencing has many
disadvantages, most of which revolve around the requirement
to target, isolate, and amplify a single target gene or region, via
PCR or bacterial cloning. It is a time-consuming and work-
intensive process, requiring the cloning and bacterial propaga-
tion of clones to be sequenced rendering the method particularly
inefficient for generation of genome-size data sets. In compar-
ison to the new UHTS approaches, Sanger sequencing is rela-
tively expensive and less efficient. However, Sanger sequencing
reads are longer (700–1000 bp) and of higher quality (fewer
errors) than those generated by the UHTS technologies and are
therefore better for resolving repeat sequence structures. To
date, most genome and transcriptome sequencing projects have
utilized Sanger sequencing.
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1.2. UHTS Platforms The key to transforming genome sequencing was to maximize the
throughput while minimizing costs and maintaining the high
accuracy of sequence reads. Several platforms have recently made
great strides in this area, with many other technologies proposed
or underway. A large number of recent studies have utilized UHTS
for many aspects of genome analysis. UHTS approaches can be
broken down into two classes: short-read and microread UHTS.
These technologies include massively parallel sequencing-by-
synthesis short-read approaches such as Roche/454 pyrosequen-
cing (http://www.454.com/) and the microread approaches
of Illumina’s (formerly Solexa; http://illumina.com/) ‘‘Clonal
Single Molecule Array’’ technology and ABI’s sequencing by liga-
tion (ABI SOLiD: http://www.appliedbiosystems.com). A key
benefit of all three UHTS approaches over Sanger sequencing is
that there is no need to clone and propagate the DNA in bacteria.
The clone-free approach has multiple benefits such as little or no
bias in sequence representation and decreased time and cost for
library construction. The 454 pyrosequencing system generates
reads of up to 200–300 bp, but is presently more expensive per
base than Illumina or SOLiD microread approaches. Due to the
relatively longer read lengths of the 454 system, it is currently the
best of the three platforms for de novo genome sequencing.

The Illumina and SOLiD systems currently generate approxi-
mately 35 bp reads and are best suited for resequencing or applica-
tions in which a reference genome is known or for applications
such as gene profiling where the short length of the microread is
not a concern. Microread technologies are presently used for
transcriptome analysis, ChIP-seq, chromatin methylation studies,
microRNA, and expression profiling experiments. In general, the
454 short-read system generates an order of magnitude-less
sequence, around 100 megabases (MB) per run, compared to
the microread platforms which are capable of delivering one to
several gigabases (GB) of sequence per run. The 454 platform
requires as little as 8 h for a single run, whereas 3 or more days
are required for microread sequencers, and the material cost per
run is similar across all three platforms at about $5 K–$10 K per
run. Other ultra-high-throughput sequencing systems are being
developed including platforms by Helicos Biosciences, VisiGen
Biotechnologies, Pacific Biosciences, and Genovoxx, although
these new systems have not yet been commercialized.

1.2.1. Roche/454 Genome

Sequencer 20 and FLX

Systems

The 454 sequencing platform performs sequencing by synthesis
through pyrosequencing (3) on a PicoTiterPlateTM within which
hundreds of thousands of emulsion-based PCR reactions amplify
DNA strands attached to beads (4). Following amplification, these
beads are separated and microscopic wells on the PicoTiterPlate are
loaded with a single bead. To accomplish pyrosequencing, a single
dNTP (e.g., dTTP) is added to the plate per polymerase cycle.
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If this nucleotide is incorporated, the pyrophosphate released is
recorded as a luminescent signal due to a luciferase-based reaction,
and if multiple repeated bases are incorporated (e.g., three dTTP in
sequence), a proportionally higher amount of light is released and
recorded. The light generated during each nucleotide addition
cycle is recorded and displayed in a pyrogram. Current generation
454 GSFLX sequencers, which are rapidly replacing the first gen-
eration 454 GS20 platforms, produce approximately 100 MB of
sequence per 8 h run at a cost of approximately $5 K–$6 K per run.
This cost is >10-fold less expensive than Sanger sequencing and
potentially generates 5- to 10-fold more sequence per day. Pre-
sently, the GSFLX can provide 200–300 bp reads with a projected
read length of 500 bp in the near future. However, the 454
sequencing system has limitations including difficulties in sequen-
cing through homopolymers (5). Ultimately, the 454 FLX is best
suited for applications that require longer sequence reads, such as
de novo genome sequencing.

1.2.2. Illumina 1G Genome

Analyzer

Illumina (formerly Solexa) sequencing is based on solid phase
amplification followed by sequencing by synthesis of randomly
fragmented DNA. The technology involves attachment of a short
DNA fragment to a solid surface called a flow cell. The attached
DNA fragments are PCR amplified to create clusters at a very
high density (>10 million DNA clusters per lane) on the surface
of the transparent sequencing flow cell. Amplified fragments
representing a cluster are then sequenced and imaged with each
reaction step. The system uses dNTPs containing fluorescently
labeled 30-reversible terminators, each emitting a different fluor-
escence signal. As the sequencing reaction occurs, all four dNTPs
with their corresponding fluorescently labeled reversible termi-
nator are added to the reaction, imaged, and the 30-terminator is
removed to allow for the next sequencing step. This sequencing
process is repeated for multiple cycles. The Illumina platform
generates a much greater amount of sequence (�1500 MB/
run) at a similar cost (�$4 K–$6 K) to 454. This represents an
approximately 10-fold increase in sequence information over
454 per run. However, the key disadvantages of the Illumina
platform are shorter read lengths (25–36 bp) and a longer run
time (3–4 days) than with the 454. Illumina’s sequencing-by-
synthesis approach provides high accuracy (<1.5% error per
base). While the 454 platform generates longer reads (�200–
300 bp), the key advantage of the Illumina platform is that it is
capable of generating 10-fold more sequence data, and nearly
500-fold more independent reads for approximately the same
cost per run. Although the Illumina platform generates very
short reads, the total amount of sequence generated per run
(>1 GB) makes the technology a great choice for applications
that benefit from deep sampling and in studies where the shorter
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read length is not detrimental. Therefore, the Illumina genome
analyzer is ideally suited for resequencing applications, such as
RIP-seq, ChIP-seq, transcriptome sequencing, small RNA dis-
covery, and expression profiling.

1.2.3. Applied Biosystems

SOLiD

Applied Biosystems’ sequencing by oligonucleotide ligation and
detection (SOLiD) technology is based on a sequencing-by-
ligation chemistry. Like the 454 platform, emulsion PCR is used
to amplify DNA fragments on beads. However, the beads are then
attached to a slide and the DNA fragments are interrogated
through ligation by interactions of labeled oligonucleotide probes.
Each oligonucleotide probe interrogates two bases at a time, and
the base-pair combination is recorded as a color. The resulting
DNA sequence is encoded in 2 bp color space depending upon the
oligonucleotide primer probe. After the color has been recorded,
the probe is cleaved, releasing the label. The process is repeated for
multiple cycles with oligonucleotides that anneal offset by one base
in each cycle. This means that each base is interrogated twice,
allowing increased accuracy (a claimed 0.2% error rate), and pro-
vides added power in deep SNP detection for such applications as
rare allele testing. The SOLiD platform has a sequence output
comparable to that observed in Illumina sequencing, and supports
sequencing from both DNA fragment libraries (35 bp) and mate-
paired libraries (variable region between the paired ends). A single
DNA fragment library sample can be sequenced on two slides to
generate �3 GB of 35 bp reads in 7 days at a cost of �$6 K or a
mate-paired library can be sequenced to generate �4.5 GB of
paired 25 bp (50 bp) reads in about 10 days at a cost of �$8 K.
Currently, 1–16 samples can be run at a time, with multiplexing
enabling the differentiation of up to 256 mixed samples per run,
thus providing the ability to test many samples simultaneously,
which makes this technology competitive in terms of cost with
microarrays for detecting transcript abundance.

1.3. UHTS Technologies

in Genome Studies

Although there are significant obstacles in making UHTS technol-
ogies useful for de novo sequencing of complex plant genomes
because of the difficulties in assembling the short reads, assembly of
small microbial genomes has proven manageable (4, 6, 7). All three
commercial UHTS platforms are making use of the power of
paired-end reads (mate-pairs), where the ends of a larger DNA
fragment are sequenced. Mate-pair sequencing was a key innova-
tion that allowed shotgun sequencing of large complex genomes
such as human and drosophila (8, 9). Mate-pair technology holds
the promise of allowing UHTS to be used for de novo sequencing
in the near future. Additionally, the utility of a 454-short-read/
Sanger hybrid approach was investigated in several studies includ-
ing the sequencing of a grape genome (10) and in the sequencing
of marine microbes (11). The combination of the two technologies
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is highly amenable to the sequencing of small genomes with a low
repeat content and as the lengths of UHTS reads increases, the
utility of these approaches for de novo assembly will likely improve.

The feasibility of applying 454 pyrosequencing technology to
sequencing complex plant genomes was investigated in many
recent studies. In one study, 454 pyrosequencing was used for
the determination of repeat sequences in the soybean genome
(12). A second study used 454 reads to characterize families of
repeat sequences in pea, demonstrating that 454-based UHTS
proves useful for certain aspects of complex genome analysis
(13). Another study used the technology to sequence four barley
BAC clones (14). This proved to be an efficient approach for the
gene-rich regions, but encountered difficulties in sequencing over
repeats. It was concluded that 454 sequencing could be used with
a BAC-by-BAC approach to sequencing of complex plant gen-
omes, especially if the technology was to be used in combination
with Sanger sequencing. A third study used the 454 GS20 to
sequence the plastid genomes of two angiosperms Nandina
domestica and Platanus occidentalis at greater than 99% coverage
(15). Thus, it is clear that UHTS has utility for de novo sequencing
of small genomes and can also be useful for certain applications in
eukaryotic genome sequencing. However, with the present read
length limitations, even in the case of the 454, the technology
remains best suited for resequencing applications in plants or de
novo genome sequencing of species in which a completed refer-
ence genome is available.

1.3.1. Identification of

Polymorphisms by UHTS

Single nucleotide polymorphisms are useful as genetic markers in
population genetics studies and for mapping of mutations in the
laboratory. UHTS has been used for the detection of SNPs and
mutations (16–18). In one study, the transcriptomes of two
inbred maize lines were sequenced using 454 and the resulting
short reads were used to identify >4900 putative SNPs (16).
Another group has developed a novel SNP discovery approach
termed complexity reduction of polymorphic sequences (CRoPS;
(18)). In the CRoPS approach, tagged complexity-reduced
libraries of two genetically distinct maize samples were prepared
by amplified fragment length polymorphism and sequenced on a
454 FLX genome sequencer. This enabled the identification of
SNPs in maize with applications among other plant species. Addi-
tionally, mutation detection can also be accomplished using
UHTS. For example, 454 short-read sequencing was used to
detect sequence variations in lung adenocarcinoma samples (17)
in which previously known mutations were verified and additional
mutations previously defined as wildtype by Sanger sequencing
were identified. Thus, even the error-prone pyrosequencing tech-
nology is useful for detecting rare SNPs due to the massive amount
of sequence that can be generated.
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1.3.2. UHTS for Discovery

of Small RNAs

UHTS is particularly well suited for the detection, quantification,
and characterization of small RNAs (sRNA). Small RNAs play an
important role in plant defense and development and regulate the
expression of a diverse array of genes. Identification of small RNAs
is important for the elucidation of gene regulatory networks guid-
ing plant development. Previously, tag-based methods such as
serial analysis of gene expression (SAGE; (19)) and massively
parallel signature sequencing (MPSS; (20)) have been used to
identify small RNAs (21, 22). One sRNA study used both 454-
based UHTS and MPSS to discover and characterize small RNAs
in an Arabidopsis RNA-dependent RNA polymerase 2 mutant
(23). Other studies have further utilized the 454 sequencing
platform to catalog and characterize small RNAs in Arabidopsis
(24–27), Populus trichocarpa (28), California poppy (29), and
wheat (30). Due to sufficient read lengths, the large number of
reads, and the ability to barcode/multiplex samples, UHTS is
ideally suited for the discovery and characterization of small
RNAs in plants.

1.3.3. ChIP Sequence for

Identification of DNA–

Protein Interactions

Gene expression is regulated directly by transcription factor bind-
ing and indirectly influenced by chromatin packaging. Presently,
microarrays remain the dominant method for analyzing DNA
sequences interacting with proteins such as transcription factors
in vivo. In such microarray studies, typically called ChIP-chip
((31); also see Chapter 1), a transcription factor is isolated by
immunoprecipitation along with the DNA fragment to which it
is bound. The co-immunoprecipitated DNA is labeled, hybridized
to a DNA microarray, and the resulting hybridization signal data
are analyzed. UHTS technologies offer an alternative to microar-
ray hybridization, namely, direct sequencing of the DNA bound to
the immunoprecipitated transcription factor protein (ChIP-seq).
ChIP-seq offers several important advantages over microarrays
including increased sequence information, sensitivity, and the
need for less starting material (32). A handful of studies have
recently implemented the use of ChIP-seq to identify DNA
sequences bound by immunoprecipitated proteins. The procedure
involves the immunoprecipitation of proteins followed by the
isolation and sequencing of the physically interacting or bound
DNA fragments. Using the Illumina 1G microread sequencing
platform, two groups have recently created genome-wide profiles
of binding sites for the transcription factors NRSF and STAT1 in
Jurkat and HeLa cell culture systems, respectively (33, 34). The
ChIP-seq method has also been used in chromatin mapping (35),
a nucleosome positioning study (36), and methylation studies (37,
38). UHTS should broaden our ability to study sites of transcrip-
tion factor binding, enabling the deciphering of networks of inter-
actions and transcriptional regulatory cascades guiding plant
development, and the genome-wide responses to environmental
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conditions. With the current cost, sensitivity, and sequencing
capabilities per day of the Illumina and SOLiD platforms, ChIP-
seq will likely replace array-based ChIP assays.

1.3.4. RIP Sequence

for Identification of RNA–

Protein Interactions

On another level of gene regulation, RNA-binding proteins
(RBPs) participate in all facets of RNA metabolism. RBPs guide
processes including the synthesis, splicing, transport, localization,
translation, and degradation of RNA molecules. In an approach
analogous to ChIP-seq, UHTS can be used to identify the RNA
molecules bound by specific RBPs in vivo. Antibodies against
specific RBPs or tagged versions of RBPs are used to immunopre-
cipitate the proteins and the interacting RNA is isolated, converted
to cDNA, and sequenced (see Chapter 2). The RIP-seq technique
has not yet been described in published studies, but is anticipated
to elucidate the networks of RNA–protein interactions underlying
post-transcriptional regulation of gene expression and transcript
processing in plants.

1.3.5. UHTS Has a Wide

Range of Applications

The diversity of applications of UHTS cannot be overstated. For
example, 454 sequencing has been used in a several metagenomics/
biodiversity studies (39–41). Additionally, the immense depth of
sequencing is particularly well suited to sequencing of damaged
ancient DNA (aDNA). UHTS technologies were recently imple-
mented in studies involving the sequencing of wooly mammoth
aDNA (42, 43) and DNA extracted from Neanderthals (44, 45).
Finally, DNA microarray technologies were adapted and used in
UHTS to enrich for and selectively sequence a specific subset of an
entire genome (46, 47).

1.3.6. UHTS Analysis of

Transcriptomes

UHTS can be used both for gene expression profiling and tran-
scriptome sequencing. Previously, expression profiling was con-
ducted with microarrays or tagging approaches such as SAGE or
MPSS. SAGE was developed to quantitatively assess transcript
expression and uses restriction enzymes to create short cDNA
tags that are quantified by sequencing (19). However, a disad-
vantage of SAGE is that many sequences cannot be unambigu-
ously mapped onto a genome due to their short lengths (48).
Also, SAGE is a labor- and time-intensive protocol and some
transcripts may not contain the restriction enzyme site required
for tagging and sequencing the transcript. MPSS similarly utilizes
a restriction endonuclease cleavage step, but sequence determi-
nation is accomplished with repeated steps in which the ligation
of an adapter is followed by the hybridization of a labeled decoder
probe (20). Perhaps the greatest limitation of tagging approaches
is the entire sequence of the target is not determined. Microarray-
based approaches have the disadvantages of associated high
cost, being labor intensive, and requiring a larger amount of
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starting DNA material (32). Therefore, several recent studies
have utilized UHTS for gene expression and EST sequencing
applications.

A laser capture microscopy – 454 sequencing technique was
used to analyze the transcriptome of maize stem apical meristem
(49). A novel strategy to profile gene expression was conducted in
maize ovaries which harnessed the specificity of the 30-UTR
enabling the resolution of transcripts possessing similar sequences
(50). In another maize study, a technique called ‘‘robust analysis of
50-transcript ends’’ (50-RATE) in which 50-oligocapping followed
by restriction enzyme tagging and sequencing was used to profile
gene expression (51). Finally, another group conducted gene
expression profiling using ‘‘polony multiplex analysis of gene
expression’’ (PMAGE) in which they sequenced millions of
cDNA molecules through polony sequencing by ligation (52, 53).

Several recent studies have used UHTS to analyze transcrip-
tomes from a variety of organisms and conditions. For example,
transcriptome sequencing of a prostate cancer cell line LNCaP
(54) and gene expression profiling in Drosophila were both accom-
plished using the 454 platform (55). Analysis of the wasp tran-
scriptome, an organism for which the genome has yet to be
sequenced, was also conducted using 454, generating nearly
400,000 brain cDNA sequence reads (56). UHTS-based plant
transcriptome analysis has also been conducted in Arabidopsis
(57) and Medicago trunculata (58), and deep 454-based sequen-
cing of ESTs from two inbred maize lines was used to identify
SNPs (16).

Additionally, ultra-high-throughput sequencing of transcrip-
tomes is a powerful approach for the empirical annotation of exon
structures and splice junctions in plant genomes. For example, we
have used Illumina sequencing to validate and/or improve com-
putationally predicted gene models in the model grass species
Brachypodium distachyon (Fig. 5.1) and to empirically define tran-
scription units otherwise overlooked by gene prediction algo-
rithms. In addition to the deciphering of exon structures, we are
able to determine alternative splice variants with unprecedented
power.

In conclusion, UHTS is more efficient than classical Sanger
sequencing for transcriptome discovery and validation, and pro-
vides a much higher signal-to-noise ratio than other approaches
such as whole-genome tiling microarrays.

1.4. Considerations for

Sample Preparation

and Design of UHTS

Experiments

There are many points to consider when designing UHTS experi-
ments that will vary depending upon the biological questions
being asked. Different studies such as the analysis of transcrip-
tion-binding sites, transcriptome analysis, or gene profiling
require different sample collection and preparation procedures.
Plant growth conditions and tissue collection are sampling aspects
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that need to be addressed in the design of the experiments. For
example, since the abundance of most, if not all transcripts fluc-
tuates over the day in plants (59), periodic sampling over the entire
day and night may be necessary to maximize cDNA library diver-
sity in a transcriptome sequencing experiment. For transcriptome
analysis, the type of cDNA library prepared depends upon the
amount of RNA available and the results desired. In general, cells
contain both extremely abundant mRNAs and rare transcripts that
occur at levels of only a few copies per cell. Such a range in
expression levels can make it extremely difficult to discover and
sequence rare transcripts. Thus, to obtain a full representation of
all transcribed genes, it may be necessary to normalize cDNA
libraries. However, cDNA library normalization would not be
applicable for gene expression profiling, and it may not be feasible
to normalize a cDNA library when RNA quantities are particularly
limited. We discuss a cDNA normalization technique in detail
below.

Other considerations to address are whether or not to multi-
plex (i.e., ‘‘barcode’’) the samples so that several distinct samples
can be analyzed in a single run or whether paired-end reads may
be necessary if sequencing larger DNA fragments. In designing
experiments, proper controls may need to be sequenced in

Fig. 5.1. Illumina sequencing of the Brachypodium distachyon transcriptome. A Gbrowse screenshot depicting empirical
microread validation of a predicted gene. 32mer Illumina reads (arrowheads) aligned to the Brachypodium genome define
the exon structure and splice junctions, including inferred alternative splicing events (http://www.brachybase.org).
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parallel. Additionally, methods for the validation of discoveries,
especially regarding SNPs, ChIP peaks, RIP peaks, and alterna-
tive splicing variants need to be considered. Finally, the impor-
tance of a well-planned computational infrastructure and
experimental design cannot be understated for UHTS experi-
ments (some of these are discussed in Section 1.6.). Ideally, a
computational pipeline should be implemented prior to begin-
ning the sequencing experiments, and simulated sequence data
sets can be used to test and develop computational tools prior to
sequencing efforts.

1.5. Which UHTS

Platform Should Be

Used for Sequencing?

Different UHTS approaches possess unique strengths and short-
comings for particular applications. The key performance differ-
ences are throughput, read lengths, the number of independent
reads, and total nucleotides sequenced. Higher throughput may
be more desirable than read length for some applications such as
genome resequencing or transcriptome analysis, but longer read
lengths and/or paired-end reads are beneficial for de novo gen-
ome assembly. Ultimately, microread approaches may be ineffi-
cient or inappropriate for most de novo sequencing applications,
particularly when sequence repeats are an issue (e.g., eukaryotic
genomes). In contrast, microread approaches may be superior
for resequencing or when the number of reads is the key deter-
minant of experimental success (e.g., transcript analysis or
profiling).

Given a high-quality reference genome, it is possible to use
bioinformatics approaches to empirically determine, beforehand,
the unique single-copy K-mers in a genome; thus, the probability
of being able to correctly map a sequence of a particular length of
either micro- or short-read UHTS output can be predetermined.
For example, it may be acceptable in a resequencing application for
85% of all 32mers in a genome to occur as unique single copy
sequences because simply aligning microreads to the reference
genome will unambiguously cover most of the genome. It is also
notable that some computational analyses can be substantially
more intensive with microread approaches due to the larger num-
ber of shorter sequences that need to be aligned to a reference
sequence.

While individual platforms offer a tremendous amount of infor-
mation, an attractive alternative may be a hybrid approach applying
a combination of sequencing methods. For example, a Sanger/
pyrosequencing hybrid approach was utilized for the genome
sequencing of marine microbes (11) and the complex grape gen-
ome (10). The hybrid approach was found to be a very good and
highly cost-effective method for draft genome assembly. Further-
more, a combination of 454 and Illumina platforms should allow
researchers to benefit from the synergy of the large collection of
Illumina microreads and the increased ability to assemble sequences
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with the longer reads of the 454 platform. We are currently pursu-
ing this UHTS hybrid approach for de novo sequencing of cDNA
libraries from non-model species of vertebrates.

1.6. Computational

Considerations

UHTS can generate hundreds of millions of short-sequence reads
per run. This enormous amount of information must be stored and
manipulated in an efficient and cost-effective manner. Therefore, a
well-designed computational pipeline is necessary to analyze large
UHTS data sets. Thus, ultra-high-throughput sequence data have
created a need for new sequence analysis algorithms and greater
computational power and storage capacity. Computational analysis
begins with preprocessing which may include error detection/cor-
rection. If a quality (Q) value is available, it can be used to detect and
discard low-quality sequence reads. One significant problem is the
issue of sequence accuracy. Sequencing errors are problematic in that
they may be either incorporated into the contigs during de novo
assembly or possibly create alignment errors in resequencing applica-
tions. Many assembly algorithms are available for the assembly of
larger (�500 bp) Sanger sequences, including PHRAP (60), the
Celera and TIGR assemblers (61, 62), and ARACHNE (63)
among others. These long-read assembly algorithms are not suited
to handling millions of short-read sequences and typically do not run
at all on shorter read data. There have been many recent algorithmic
and software tool developments for use in analyzing the short-read
sequencing data, including several short-read assemblers with error-
handling capabilities. Below we briefly outline several of the compu-
tational tools recently developed for analyzing UHTS data.

1.6.1. Brief Summary of

Computational Tools for

Analyzing UHTS Data

In addition to the software tools provided by the sequencing
platform vendors, several tools useful for analyzing UHTS data
sets have been developed by the community.

BLAT: The BLAST-like alignment tool (BLAT) scans an index
of all non-overlapping K-mers in sequence database for short
matches and extends these into high-scoring pairs. BLAT is differ-
ent from BLAST, in that it builds an index of K-mers in the database
in memory and scans through the query sequence for the matches.
BLAT then combines matches into longer alignments (64).

Velvet: Velvet is a de novo assembler for short-read sequences
that uses a de Bruijn graphs approach. Developed by Daniel
Zerbino and Ewan Birney at the European Bioinformatics Insti-
tute (EMBL-EBI), Velvet is specifically designed for UHTS tech-
nologies (http://www.ebi.ac.uk/�zerbino/velvet/).

SSAKE: SSAKE cycles through reads stored in a hash table and
searches a prefix tree for the longest possible match between any
two sequences, extending matches to build a contig (65).

VCAKE: The Verified Consensus Assembly by K-mer Exten-
sion (VCAKE) uses a K-mer extension approach very similar to
that applied in the SSAKE assembler. However, compared to
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SSAKE, VCAKE has an improved ability to handle the sequencing
errors observed in UHTS reads. VCAKE extends the seed
sequence one base at a time relying upon the most commonly
observed base from all matching reads (66).

SHARCGS: The short-read assembler based on robust contig
extension for genome sequencing (SHARCGS) is another short-
read assembler able to handle millions of reads and the erroneous
base-calls in UHTS data sets. SHARCGS was demonstrated by
assembling Illumina 36mer reads from the genome of Helicobacter
acinonychis, yielding 937 contigs covering 98% of the genome (7).

MUMmerGPU: MUMmerGPU is an open-source high-
throughput parallel pairwise local sequence alignment program
that runs on graphics processing units (GPUs) in common work-
stations. MUMmerGPU uses the nVidia Compute Unified Device
Architecture (CUDA) to align multiple query sequences against a
single reference sequence stored as a suffix tree. MUMmerGPU
dramatically outperforms (10-fold faster) a serial CPU version of
the MUMmer sequence alignment kernel (67).

EULER-SR: The Eulerian assembler was used for the analysis
of 454 data from two bacterial genomes and Illumina short-read
data from a human BAC. Using the proprietary 454 Newbler
software for comparison, the Eulerian assembler was shown to
assemble nearly optimal short-read assemblies (6).

RGA: Reference guided assembler (RGA) aligns microreads to
their best match in a reference sequence, and then creates a guided
consensus sequence from the aligned overlapping reads. RGA
outputs the resulting contigs, singletons, the real coverage of
each base in the assembly, and identifies SNPs and INDELs in
the assembled sequence compared to the reference (Shen and
Mockler, manuscript in preparation).

HashMatch: HashMatch rapidly aligns perfect matching micro-
reads against a reference sequence. HashMatch is optimized for
fixed length microreads (e.g., 25mers and 32mers) and exact
matching and rapidly mines Illumina data to identify reads that
hit a genome or any annotated feature within a genome. These
features can include splice junctions, exons, introns, UTRs, and
intergenic regions (Shen and Mockler, manuscript in preparation).

SPLAT: SPLAT (spliced alignment tool) exhaustively aligns
microreads against a reference sequence assuming a gapped align-
ment, which allows a read to span an intron. SPLAT predicts
unannotated or novel splice junction reads, taking into considera-
tion intron characteristics including intron length and sequence
context and filters out microreads with low complexity sequences,
or reads that match the genome over their entire length (Shen and
Mockler, manuscript in preparation).

QCGA: Q-value and consensus guided assembler (QCGA)
assembles short reads through a progressive K-mer search of
sequence data organized in a prefix tree and stored in a hash,
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similar to SSAKE and VCAKE. Contigs are created and grown
from the short reads taking into consideration the quality values
associated with each base in the read and read multiplicity to
resolve ambiguities table (Bryant, Wong and Mockler, manuscript
in preparation).

1.7. Conclusions and

Perspectives

After 20 years and the sequencing of the first complex genomes,
Sanger sequencing has changed the way we study biology. UHTS
holds the promise of ushering us into the next era of functional
genomics where DNA sequence is not just a catalog but a guide to
the extraordinary biology encoded in an organism’s genome. The
speed, cost, and depth of sequencing provided by UHTS changes
the types of questions that biologists can ask, and potentially
changes how we define a genome sequence. Soon, the DNA
sequence alone may not be sufficient to describe the nuclear
genome. A description of nucleosome positions, chromatin mod-
ifications, methylation events, coding and non-coding RNAs,
alternative splicing, and natural antisense transcripts will be com-
monplace and essential for describing the functional genome of an
organism.

2. Materials

During plant development, genes may be differentially expressed or
alternatively spliced depending upon the tissue type and temporal
and environmental cues. Transcriptome analyses are necessary to
fully characterize gene structure including the identification of alter-
native splicing. These analyses are also important for the elucida-
tion of gene expression in different cell types under different
developmental conditions to better understand gene regulatory
networks guiding plant development. The method below describes
the preparation of a plant cDNA library for ultra-high-throughput
sequencing on the Illumina platform.

2.1. Precautions and

Stock Solutions

Special precautions should be taken to minimize RNA degrada-
tion by ribonucleases and to obtain libraries with high proportion
of full-length cDNAs. To minimize RNase contamination, the
workspace, centrifuge rotor, pipettors, and other equipments
should be treated with RNase decontamination agents such as
RNaseZap (Ambion). Plastic ware such as pipette tips and micro-
centrifuge tubes should be RNase-free grade. All RNA manipula-
tions at room temperature should be performed in the shortest
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possible time. Frozen tissue powder should be placed directly
into the ice-cold Concert reagent (Invitrogen), and the RNA
solution should be treated with RNAsecure reagent (Ambion)
before the cleanup step. All stock solutions should be prepared
using RNase-free deionized water. Handling of the Concert
reagent, phenol, chloroform, diethylpyrocarbonate (DEPC)
and b-mercaptoethanol should be done in a fume hood. All
RNA manipulations should be performed at 4�C, except when
indicated otherwise.

2.2. Stock Solutions 1. 80% Ethanol

2. 2-Propanol

3. 3 M Sodium acetate, pH 5.5

4. 1 M Tris–HCl, pH 8.0

5. 5 M NaCl

6. RNase-free deionized water treated with diethylpyro-
carbonate

7. 10% SDS

2.3. RNA Purification 1. RNaseZap (Ambion, cat. # AM9780 )

2. RNase-free DNase I (Ambion, cat. # AM2238 )

3. Concert Plant RNA Reagent (Invitrogen, cat. # 12322012)

4. RNase-free DNase I (Ambion, cat. # AM2238)

5. RNAsecure reagent (Ambion, cat. # AM7005)

6. RNeasy plant mini RNA kit (Qiagen, cat. # 74904)

7. Poly(A) Purist kit (Ambion, cat. # 1919)

8. Microcentrifuge

9. Vortex mixer, rotating platform

10. Heating block or PCR thermal cycler

11. Spectrophotometer (NanoDrop Technologies)

12. Bioanalyzer (Agilent Technologies)

2.4. cDNA Synthesis

Using SMART Protocol

and DSN Library

Normalization

1. BD SMART cDNA Library Construction kit (BD Biosciences
Clontech, cat. # 634901)

2. TRIMMERDIRECT cDNA Normalization kit (Evrogen,
cat. # NK002)

3. Phenol:chloroform:isoamyl alcohol (25:24:1) mixture

4. TE buffer (10 mM Tris–Cl, pH 7.5, 1 mM EDTA)

5. Qiagen PCR Purification kit (Qiagen, cat. # 28106)

6. Microcentrifuge
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7. PCR thermal cycler

8. Spectrophotometer (NanoDrop Technologies)

9. Horizontal agarose gel electrophoresis

2.5. SMART/DSN cDNA

Preparation for Solexa/

Illumina Sequencing

1. DNA Polymerase I, Large (Klenow) Fragment (NEB)

2. T4 DNA Polymerase (Invitrogen)

3. T4 Polynucleotide Kinase (NEB)

4. Klenow Fragment (30–50 exo–) (NEB)

5. Adenosine 50-triphosphate (ATP) (NEB)

6. 100 mM dNTPs (Invitrogen)

7. Phusion Hot Start High-Fidelity DNA Polymerase (NEB)

8. T4 DNA Ligase (Invitrogen)

9. NuSieve GTG Agarose (Lonza, cat. # 50081)

10. Qiagen kits: PCR Purification (cat. # 28106); MinElute
PCR Purification (cat. #28004); MinElute Reaction
Cleanup (cat. # 28204); and MinElute Gel Extraction
(cat. #28604)

11. Genomic DNA Sample Prep Oligo Only kit (Solexa/Illumina
cat. # FC-102-1003/1002579).

12. Microcentrifuge

13. PCR thermal cycler

14. Spectrophotometer (NanoDrop Technologies)

15. Nebulizers (Invitrogen)

16. Tank with compressed nitrogen

17. Horizontal agarose gel electrophoresis system

2.6. cDNA Synthesis

Using Random Priming

Protocol

1. Superscript III First-Strand Synthesis kit (Invitrogen, cat. #
11904-018)

2. 100 mM dNTPs (Invitrogen)

3. DNA Polymerase I, Large (Klenow) Fragment (NEB)

2.7. Randomly Primed

cDNA Preparation for

Solexa/Illumina

Sequencing

1. As used in Section 2.5.

2.8. Sequencing Using

Solexa/Illumina 1G

Genome Analyzer

1. Illumina Standard Cluster Generation kit (cat. # FC-103-
1001/0801-0304)

2. 36 Cycle Solexa/Illumina Sequencing kit (cat. # FC-104-
1003 /1001461)
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3. Illumina Cluster Station

4. Illumina Genome Analyzer

3. Methods

3.1. Total RNA Isolation This protocol has been used successfully for Arabidopsis, rice,
poplar, and Brachypodium and yields high-quality intact RNA
suitable for a synthesis of cDNA libraries enriched with full-
length cDNAs. Approximately 200 mg of ground tissue yields
up to 60–100 mg of total RNA. To prevent contamination with
genomic DNA, RNA should be digested with DNase I followed
by a cleanup on Qiagen mini-column. The procedure can be
scaled up without changing tissue/reagents ratio if higher
amounts of the total RNA are desired.

3.1.1. Extraction of the Total

RNA and Genomic DNA

Digestion

1. Grind flash-frozen tissues in liquid nitrogen using mortar and
pestle or in stainless steel jars using Mixer Mill MM 301
(Retsch).

2. Transfer approximately 200 mg of frozen tissue powder
directly into 1 mL of ice-cold Concert Plant RNA Reagent,
immediately vortex for �20 s and shaken for 5 min at room
temperature (RT).

3. Centrifuge at �21,000� g for 2 min and transfer the super-
natant to a new tube on ice.

4. Add 200 mL of cold 5 M NaCl and centrifuge at�21,000� g
for 2 min.

5. Transfer the supernatant to new tube, add 500 mL of chloro-
form, and mix by inverting. Centrifuge at �21,000� g for
2 min and transfer the aqueous/top layer to a pre-chilled
2 mL tube. Repeat the chloroform extractions two to three
times until the aqueous phase is clear.

6. After the final chloroform extraction step, transfer the aqueous
layer to a pre-chilled tube and add 0.8 volumes of 2-propanol.
Precipitate the RNA for 10 min at RT.

7. Centrifuge at �21,000� g for 10 min, remove supernatant,
and wash RNA pellet with cold 80% ethanol.

8. Air dry the pellet for approximately 5 min and re-suspend
RNA in 178 mL of 1� RNAsecure reagent. To inactivate
RNases, incubate for 10 min at 65�C.

9. Add 20 mL of 10� Turbo-DNase buffer, 2 mL of Turbo-
DNase, and digest the DNA at 37�C for 10 min.
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3.1.2. RNA Cleanup 1. Add 700 mL of RLT buffer from RNeasy plant mini RNA kit
to the digestion reaction.

2. Mix with 500 mL of 95% ethanol and proceed with RNA
cleanup according to the manufacturer’s protocol.

3. Retain 2 mL for quantification by NanoDrop spectrophot-
ometer and 100–500 ng in 2 mL of water to check RNA
integrity using Agilent 2100 Bioanalyzer (Fig. 5.2; see
Note 1).

3.2. Purification of

poly(A) RNA

In order to obtain high-quality mRNA essentially free of other
cellular RNAs, two cycles of oligo(dT) purification using
Ambion’s Poly(A) Purification kit are recommended.

1. Bring the sample volume to 250 mL with nuclease-free water,
add 250 mL of 2� binding solution and mix thoroughly.

2. Add each sample to the oligo(dT) cellulose tube, mix well,
and incubate at 72�C for 5 min. Then incubate the sample on
a rocker for 60 min at RT with periodic ‘‘flick-mixing’’.

3. Centrifuge the sample at 4000� g at room temperature for
3 min and remove the supernatant. Add 500 mL of Wash
Solution I to the RNA-oligo(dT) cellulose, mix by vortexing,
and transfer to the column in provided tube.

Fig. 5.2. Bioanalyzer analysis of polyadenylated mRNA fractions. The second lane, pA1x,
is poly(A) RNA purified one time using oligo(dT) cellulose (Ambion RNA Purist kit). The
third lane, pA2x, is poly(A) RNA purified two times using oligo(dT) column. Note the nearly
complete lack of bands (ribosomal RNA) in the pA2x poly(A) sample. Thus, the pA2x
poly(A) sample is suitable for random-primed cDNA synthesis protocol for the Illumina
sequencing. The fourth lane, pAFT, is the flow through fraction of the pA1x sample
through oligo(dT) column. RNA markers (M) are shown along with their relative RNA sizes
[s]. RNA was analyzed using Agilent 2100 Bioanalyzer.
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4. Centrifuge the sample/column at 4000� g at RT for 3 min,
discard the supernatant, and repeat the process with Wash
Solution I.

5. Add 500 mL of Wash Solution II to the column, vortex briefly,
and centrifuge at 4000� g at RT for 3 min, discard the super-
natant, and repeat the process with another 500 mL of Wash
Solution II.

6. Place the spin column into new collection tube, add 100 mL of
preheated RNA Storage Solution (to 72�C), vortex briefly,
and centrifuge at 5000� g at RT for 2 min.

7. Add a second 100 mL volume of RNA Storage Solution to
column and repeat the RNA elution.

8. Transfer the sample to 1.5 mL microcentrifuge tube. Add 20 mL
of 5 M ammonium acetate, 1 mL of 5 mg/mL glycogen, and
550 mL of 100% ethanol to the eluted mRNA. Mix by inverting
and precipitate at –80�C for at least 1 h.

9. Centrifuge at maximum speed for 30 min at 4�C. Carefully
remove supernatant, add 1 mL of 80% cold ethanol, vortex
briefly, and centrifuge for 10 min at 4�C. Discard the super-
natant and centrifuge for 2 min to remove all traces of ethanol.

10. Allowthepellet to air dry forno longer than5min.Dissolvepellet
in�15–50 mL of preheated (60� C) RNA Storage Solution.

11. Check the RNA quantity and integrity using NanoDrop
spectrophotometer and Agilent 2100 Bioanalyzer.

12. Pool approximately 4 mg of 1X purified poly(A) RNA, bring
sample volume to 250 mL with water, and repeat the above-
described cycle of purification using single oligo(dT) column.

13. Retain the flow through fraction for the Bioanalyzer analysis
(Fig. 5.2). Typically, the second cycle of oligo(dT) purifica-
tion starting from 4 mg of 1X purified poly(A) RNA yields
about 1 mg of mRNA essentially free of other cellular RNAs
when starting from �4 mg of 1X purified poly(A) RNA.

3.3. Construction of

cDNA Libraries

To obtain cDNA libraries suitable for Illumina sequencing, we
have used two different approaches. The first method is based on
amplification of the full-length-enriched cDNA libraries using the
SMART technology (BD Biosciences Clontech, (68)). The second
approach is to generate cDNA libraries from highly enriched
poly(A) mRNA using random hexamer priming. The advantages
of the SMART protocol include, a requirement for only a small
amount of starting RNA, which is essential when the amount of
tissue or RNA available is a limiting factor, an ability to generate
full-length cDNAs both from total or poly(A) RNA, and the ability
to couple the procedure with library normalization using duplex-
specific nuclease (DSN) treatment (69). The DSN normalization
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corrects for the bias in rare transcript coverage observed in non-
normalized cDNA libraries. Potential pitfalls of the SMART
cDNA preparation for Illumina sequencing may be over-amplifi-
cation of the most abundant transcripts or preferential amplification
of the shorter molecules and/or under-representation of the 50-
UTRs. In addition, microreads obtained from SMART libraries
should be filtered for the sequences of SMART primers that flank
both the 50- and the 30-cDNA ends. Some target mRNAs contain-
ing strong transcriptional pauses may also be under-represented or
lost during the synthesis of the first strand of the full-length cDNA.

Randomly primed cDNA libraries have the advantage of un-
biased representation of the 50-cDNA ends including 50-untranslated
regions (UTRs). The average first cDNA strand fragment length
can also be controlled by amount and/or by length (i.e., hexa-,
hepta-, octamers, or their mixtures) of random primers. Therefore,
the nebulization step can be omitted from the Illumina cDNA
preparation. Random priming is essential for RIP-sequencing
applications. The disadvantages of random priming include a
requirement for the high purity of poly(A) RNA (to avoid con-
tamination with non-polyadenylated cellular RNAs) and a require-
ment for larger starting amounts of tissues to obtain highly purified
mRNA in microgram quantities.

3.3.1. Construction of the

SMART Prepared Full-

Length-Enriched cDNA

Libraries

This protocol is a modification of BD Clontech SMART cDNA
Library Construction method and utilizes SMART adapter
primers (68).

1. In a PCR tube, add 1 mL of each primer (CDS III/30-PCR
primer to capture the poly(A) tail and 50-SMART IV Oligo-
nucleotide). Add 250–500 ng of poly(A) RNA sample and
bring volume to total of 5 mL with nuclease-free water.

2. Incubate at 72�C and placed on ice for 2 min.

3. Add 2 mL of 5X First-Strand Synthesis Buffer (Clontech kit)
and 1 mL of 20 mM dithiothreitol (DTT) and 1 mL of 10 mM
dNTPs and 1 mL of moloney murine leukemia virus reverse
transcriptase (M-MLV RT).

4. Incubate at 42�C for 1 h in the thermal cycler and proceed to
the amplification step or store at –20�C.

5. Prepare a PCR reaction with the following reagents: 80 mL of
sterile water, 10 mL of 10X Advantage 2 PCR Buffer, 2 mL of
50X dNTPs (10 mM each), 4 mL of 50-PCR primer II A, 2 mL
of 50X Advantage 2 PCR Polymerase Mix, and 2 mL of the
control first-strand cDNA (provided with BD Biosciences
Clontech kit).

6. PCR amplify in a thermocycler [95�C for 5 min (95�C for
20 s, 65�C for 30 s, 68�C for 6 min) � 15 cycles, 68�C for
7 min].
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7. Remove 5 mL aliquots at cycles 7, 9, 11, and 13 for gel
electrophoresis (see Note 2).

8. Separate PCR products on a 1% agarose gel to determine
optimal cycle number for library amplification (Fig. 5.3).

9. Amplify the experimental cDNA library using the optimized
cycling conditions (determined in step 7) and verify the PCR
amplified products quality on a 1% agarose gel.

10. Purify the PCR products using QIAquick PCR Purifica-
tion kit.

3.3.2. Library Normalization

by DSN Treatment

This normalization method uses a modified protocol for double-
strand cDNA removal by treatment with duplex-specific nuclease
(DSN) isolated from the Kamchatka crab (Evrogen).

DSN exhibits a strong preference for cleaving dsDNA in either
DNA–DNA or DNA–RNA hybrids, thereby making it useful for
the removal of highly abundant transcripts (69). In this normal-
ization procedure, the dsDNA is first denatured, then re-annealed
for a brief period of time allowing the high-copy molecules to re-
associate. Then DSN is added to digest the high-copy dsDNAs
that have re-annealed. Through this process, the relative abun-
dances of high- and low-copy transcripts are normalized, making
cDNAs representing rare transcripts more likely to be sequenced.
The key to the DSN treatment is optimization. We have worked
out precise methods with several modifications for the optimiza-
tion of this normalization procedure (discussed below). Note: The

Fig. 5.3. Optimization of PCR cycling for a SMART cDNA library. The cDNA library
was amplified for 7, 9, 11, and 13 cycles (see text for thermal cycler conditions).
After each set of cycling, 5 mL aliquots were set aside for a gel and the remaining
PCR reaction was repeatedly run for two additional cycles. The 5 mL of PCR product
from each cycling point was run on a 1% agarose gel along with a 100-bp DNA
marker.
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two most important factors to consider when performing this
technique are the time allowed for DNA renaturation and the
concentration of the DSN enzyme. The different lots provided
by the company may have varying enzyme activity, thereby requir-
ing an optimization of the DSN dilutions for each lot purchased.
We have found that several key factors play a role in the optimiza-
tion of the DSN procedure. The annealing time is a critical para-
meter. We allow 1.5, 2, 3, and 4 h for cDNA re-association before
nuclease treatment. Additional optimization can be achieved by
increasing dilutions of the DSN enzyme. We suggest using 1/4,
1/8, 1/16, and 1/64 dilutions of the enzyme to optimize DSN
treatment (see Note 3).
1. Combine 1100–1200 ng of cDNA in a total volume of 12 mL

(bring to volume with water if necessary) and add 4 mL of 4�
hybridization buffer. Divide each sample into two, 8 mL
aliquots in PCR tubes (treatment and control).

2. Incubate the tubes at 98�C for 2 min, then at 68�C for 1.5,
2, 3, and 4 h to optimize re-association conditions.

3. While the cDNA is incubating, prepare the DSN dilutions
using 50 mM Tris–HCl, pH 8.0, and preheat the 2� DSN
master buffer at 68�C.

4. Following the incubation (re-annealing time), add 10 mL
preheated master buffer and incubate at 68�C for 10 min.

5. Quickly add 2 mL of the diluted DSN enzyme to the sample
tube and incubate at 68�C for 25 min.

6. Stop the reaction by adding 20 mL of 5 mM EDTA and bring
the final volume to 100 mL with 60 mL of sterile water.

7. Extract the normalized cDNA with an equal volume of phe-
nol:chloroform and precipitate the DNA by adding 1/10th
volume of 3 M sodium acetate, and 2.5 volumes of 100%
ethanol.

8. Re-suspend DNA pellet in 12 mL of sterile water. Purify the
DSN products using QIAquick PCR Purification kit and use
2 mL to determine DNA quantity.

9. Amplify the normalized cDNA with the Advantage 2
Polymerase mix. Add the following reagents to a PCR
tube: 39 mL of sterile water, 5 mL of 10X Advantage 2 PCR
Buffer, 1 mL of 50X dNTPs (10 mM each), 2 mL of 50-PCR
primer II A (provided in Clontech SMART cDNA Synthesis
Kit), 1 mL of Advantage 2 Polymerase Mix, and 2 mL of
template.

10. Run seven cycles with the SMART cDNA synthesis thermal
cycler program described above (Point 6 in Section 3.3.1)
and repeat the PCR optimization procedure (Point 8 in
Section 3.3.1).
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11. Cycle the non-normalized (no DSN treatment) samples by
increasing two additional cycles for a total of 7, 9, 11, and 13
cycles and determine the optimum number of PCR cycles on a
gel (Fig. 5.3).

12. Cycle the experimental (DSN-treated) samples to the opti-
mized number of cycles. Normalized samples usually require
two additional cycles as compared to the non-normalized
sample (Fig. 5.4).

3.3.3. Generation

of Random Hexamer-

Primed Libraries

1. Combine 1 mg of mRNA (see Note 4) in 4 mL of water and add
6 mL of random hexamers (50 mg/mL).

2. Heat the mixture at 75�C for 5 min and place on ice for 5 min.

3. Add the following components: 4 mL of 5X Superscript III
Buffer, 0.5 mL of RNase inhibitor (40 U/mL), 2 mL of
10 mM dNTPs, and 1 mL of Superscript III RT.

4. Incubate at 25�C for 10 min and then 42�C for 1 h. Inactivate
the reverse transcriptase by incubating at 70�C for 10 min.

5. Combine the following: 20 mL of the first-strand reaction,
8 mL of 10X Klenow Buffer, 1 unit of RNase H, 68.8 mL of
water, and 3 mL of DNA Polymerase I (Klenow fragment).

6. Incubate at 15�C for 90 min and stop the reaction by adding
5 mL of 0.5 M EDTA, pH 8.0.

7. Purify cDNA using Qiaquick PCR purification kit. Elute the
sample into 30 mL of EB buffer.

3.4. Preparation

of cDNA for Solexa/

Illumina Sequencing

We adapted a general procedure developed by Solexa/Illumina for
genomic DNA preparation (Illumina Sample Preparation Protocol
Version 2.3) with modifications described below.

Fig. 5.4. cDNA libraries normalized by DSN treatment. This gel depicts two normalized
libraries alongside their non-normalized counterparts. Five microliters of non-normalized
control (–) and 5 mL normalized (þ) cDNA libraries were separated on a 1% agarose gel.
Note the lack of abundant transcripts (intense bands in the non-normalized (–)) in the
normalized libraries (þ). A 100-bp DNA ladder is used for size comparison.
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1. Transfer the cDNA sample (�5 mg recommended) in a 50 mL
volume to a nebulizer and add 750 mL of Illumina nebuliza-
tion buffer (see Note 5).

2. Fragment the DNA using compressed nitrogen at 32–35 psi
for 7 min and centrifuge the nebulizers at 450� g for 2 min to
collect the sample from the walls.

3. Purify the sheared DNA using a QIAquick PCR Purification
Kit and elute into 32 mL of EB.

4. Mix the following in a PCR tube (see Note 6): 30 mL of
hexamer/SMART cDNA, 10 mL of 5X T4 DNA ligase buffer
with 10 mM ATP (Invitrogen), 4 mL of 10 mM dNTP mix,
2.5 mL of T4 DNA polymerase (3 U/mL), 1 mL of Klenow
DNA polymerase (5 U/mL), and 2.5 mL of T4 polynucleotide
kinase (10 U/mL).

5. Incubate for 30 min at 20�C. Purify the sample using the
QIAquick PCR Purification kit and elute in 32 mL of EB.

6. To the 32 mL DNA from above, add 5 mL of 10X Klenow
buffer, 10 mL of 1 mM dATP, and 3 mL of Klenow exo– (30 to
50 exo minus) polymerase (5 U/mL). Incubate for 30 min at
37�C (see Note 7).

7. Purify the DNA using a QIAquick MinElute Reaction
Cleanup kit and elute into 12 mL of EB.

8. Prepare the following reaction mix (see Note 8): 10 mL of
cDNA from above, 5 mL of 5X T4 DNA ligase buffer, 6 mL of
adapter oligo mix (provided by Illumina), and 4 mL of T4
DNA ligase.

9. Incubate for 15 min at room temperature.

10. Purify with a QIAquick MinElute PCR Purification Kit elut-
ing in 10 mL of EB.

11. Prepare 3.5% (w/v) NuSieve agarose in 1X TBE buffer (see
Note 9).

12. Run the gel electrophoresis at 5 V/cm and stain the gel in 1 mg/
mL of ethidium bromide in water in the dark for 10 min.

13. Excise the area in the range of 120–200 bp quickly to limit the
exposure to UV light to 30 or less seconds to minimize DNA
damage.

14. Purify the DNA from the gel slice using QIAquick Gel Pur-
ification Kit and elute in 32 mL of EB buffer.

15. Prepare the following PCR reaction mix (see Note 10): 2 mL
of DNA from above, 1 mL of PCR primer 1.1 (Illumina), 1 mL
of PCR primer 2.1 (provided by Illumina), 1 mL of 10 mM
dNTPs, 44 mL of water, and 1 mL of Phusion DNA
polymerase.
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16. Amplify using the following PCR protocol: 30 s at 98�C, then
(10 s at 98�C, 30 s at 65�C, 30 s at 72�C) for 18 cycles,
followed by 10 min at 72�C.

17. Purify using the QIAquick PCR Purification Kit, elute in
30 mL of EB and run 5 mL of product on a 2% agarose gel
(Fig. 5.5).

18. Measure the concentration of cDNA using a Nanodrop
spectrophotometer.

19. Dilute the cDNA to 10 nM final concentration by approx-
imating the average MW of the fragments to �160 bp (an
average size of cDNA extracted from gel).

20. At this point, the cDNA may be used directly for Illumina
cluster generation or stored at –20�C.

4. Notes

1. A maximum of 100 mg of RNA can be bound to the Qiagen
mini-column. Therefore, multiple columns may be needed if
the amount of RNA exceeds this limit. A 260:280 nm wave-
length ratio for the RNA obtained by this method should be
2.0 or higher. Store RNA at –80�C.

Fig. 5.5. Gel fractionation of hexamer-primed cDNA libraries. Lanes Bd1 and Bd2 are
PCR-enriched Brachypodium cDNA libraries of average sizes 160 and 220 bp, respec-
tively. Lanes Bd3 and Bd4 are cDNA libraries before gel fractionation and PCR enrich-
ment. M = 100 bp DNA ladder markers (sizes in bp are indicated on left).
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2. During the cDNA PCR amplification, overcycling of the
cDNA results in highly undesirable nonspecific PCR amplifi-
cation. Therefore, it is necessary to optimize the number of
cycles necessary to amplify a quality cDNA library.

3. Other important points to consider for optimal DSN normal-
ization: start with a consistent 1100–1200 ng of cDNA; add
all reagents/enzyme simultaneously via multi-channel pip-
ette; treat the cDNA with the DSN enzyme for precisely
25 min; perform a phenol/chloroform extraction followed
by ethanol precipitation and Qiagen column purification of
DSN-treated cDNA library to entirely eliminate the enzyme
and salts.

4. The random hexamer approach requires the isolation of
poly(A) mRNA that is of high purity and essentially free of
other cellular RNAs. This is achieved with an additional round
of poly(A) mRNA purification on oligo(dT) cellulose (see
Sections 3.2 and 3.3). To decrease an average size of frag-
ments, the first cDNA strand is synthesized using a high ratio
of hexamer primers (300 ng per each mg of poly(A) mRNA).

5. The SMART prepared cDNA must be sheared using a nebu-
lizer in order to generate fragments less than 800 bp. The cDNA
prepared by hexamer priming contains a significant population
of double-stranded fragments in the range 120–220 bp and
therefore does not require an additional fragmentation via neb-
ulization. For the random-primed libraries proceed directly to
Point 4 of Section 3.4.

6. The nebulization/fragmentation process creates 50- and 30-
overhangs. This step is implemented to convert the overhangs
to blunt ends with phosphorylated 50-termini.

7. A single ‘‘dA’’ nucleotide must be added to the 30-blunt end
of the templates to accommodate the ligation of the adapters
which have a single ‘‘T’’ base overhang at their 30-ends.
A single ‘‘dA’’ is added to the ends of double-stranded
cDNA molecules by employing the polymerase activity of
exo minus (30–50) Klenow fragment.

8. The ligation reaction requires adapters supplied by Solexa/
Illumina. The molar ratio of adapter to double-strand cDNA
fragments should be maintained approximately 10:1.

9. The gel purification step ensures proper size selection of
cDNA fragments and removal of the excess of free adapters
prior to Illumina sequencing.

10. This step allows for the selective enrichment and PCR ampli-
fication of cDNA fragments with adapter molecules attached
to both ends. The PCR is performed with two primers
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provided by Illumina that anneal to the ends of the adapters.
To avoid any skewing in the library representation PCR is
limited to 18 cycles.
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Chapter 6

Isolation of Plant Polysomal mRNA by Differential
Centrifugation and Ribosome Immunopurification Methods

Angelika Mustroph, Piyada Juntawong, and Julia Bailey-Serres

Abstract

Polyribosomes (polysomes) form as multiple ribosomes engage in translation on a single mRNA. This
process is regulated for individual mRNAs by both development and the environment. To evaluate the
translation state of an mRNA, ribosomal subunits, ribosomes, and polysomes can be isolated from
detergent-treated cell extracts by high-speed differential centrifugation. These ribonucleoprotein com-
plexes can be further purified by centrifugation through sucrose density gradients. By fractionation of the
gradient the amount of an individual mRNA in a sub-population of polysomes can be quantitatively
determined. Here, we describe methods for the isolation and quantification of polysome complexes from
plant tissues. The mRNA obtained can be further analyzed by methods that evaluate polysomal mRNA
abundance at the individual transcript or global level. A modification of the conventional polysome
isolation procedure is described for transgenic Arabidopsis thaliana that express an epitope-tagged version
of ribosomal protein L18 (RPL18) that facilitates capture of ribosomes from crude cell extracts by a one-
step immunoprecipitation method.

Key words: Polyribosomes, ribosome, translational regulation, immunoprecipitation, mRNA
translation, sucrose density gradient, epitope-tagged ribosome, ribosomal protein L18, microarray,
microgenomics.

1. Introduction

The control of mRNA translation is a critical component of gene
expression in higher plants (1–3). There are three phases of transla-
tion: initiation, elongation, and termination. The initiation phase is
a multi-step process whereby the 5’-capped and 3’-polyadenylated
mRNA recruits first the 40S and then the 60S ribosomal subunit so
that peptidyl chain elongation can commence (4). Polyribosomes
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(polysomes) form as a result of sequential initiation of ribosomes on
an mRNA and proceed in the elongation phase of polypeptide
synthesis. Once the translating ribosome reaches a termination
codon, the polypeptide is released and the 80S ribosome runs off
the mRNA. It is well established that the initiation phase is rate-
limiting. In most cases, the level of an mRNA in polysomes is well
correlated with its translation. A reduction in the number of mRNA
molecules in polysome complexes and the number of ribosomes per
mRNA is diagnostic of a restriction in initiation of translation.
mRNAs that are not undergoing translation are sequestered in
cytosolic messenger RNA ribonucleoprotein (mRNP) complexes
where they may be stabilized or degraded (5, 6).

To evaluate the translational regulation of an individual tran-
script or a population of mRNAs in an organ, it is necessary to
measure the amount of the transcript in polysome complexes,
relative to the total amount of transcript. Further insight of trans-
lational regulation is gained by assessment of the relative amount
of transcript in small to large polysome complexes. Polysomes can
be isolated from frozen plant material (whole plant, organ, dis-
sected region, or mature pollen grains). The tissue must be rapidly
frozen in liquid nitrogen upon harvest and pulverized to a fine
powder. The pulverized tissue is then thawed in an extraction
buffer under conditions that inhibit the activity of RNases. This
is routinely accomplished by use of a buffer with a high pH and if
necessary the addition of the RNase inhibitor heparin. The buffer
must also contain magnesium chloride to stabilize the two-
subunit ribosome complex and the translational inhibitors cyclo-
heximide and chloramphenicol to block further translocation of
the cytosolic and organellar ribosomes, respectively. Ionic and non-
ionic detergents are typically included to disrupt ribosome asso-
ciation with the endoplasmic reticulum and cytoskeleton. The
salt concentration can be adjusted to maintain monosomes that
lack an mRNA (0.2 M KCl) or only monosomes that are associated
with mRNA (0.8 M KCl) (7). Following centrifugation of the
extract to remove cell debris (16,000–30,000� g), the superna-
tant is centrifuged at high speed (170,000� g) through a 2 M
sucrose cushion to obtain a pellet fraction that is enriched in
ribosome subunits, ribosomes, and polysomes. The pellet is
resuspended in a buffer formulated to maintain ribosome com-
plexes, briefly centrifuged at low speed to pellet insoluble material,
and the ribosome complexes are further fractionated by centrifu-
gation through a continuous sucrose gradient. The gradient is
pumped through a UV detector and the ultraviolet absorbance
at 254 nm is recorded; the gradient is fractionated into 12–18
fractions of equal volume. These can be used to evaluate the co-
fractionation of specific mRNA of interest in fractions that contain
polysomes, 80S monosomes, or less dense complexes. The frac-
tions can also be used to evaluate the components of ribosomes
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(rRNA and proteins) and other mRNPs. The methods described
here have proven successful in the evaluation of translational reg-
ulation in maize (seedling, mature leaf, endosperm, embryo, pol-
len grains), tobacco (mature leaf), tomato (mature leaf), and
Arabidopsis (seedling organs, mature leaf) ((8–13); Bailey-Serres,
unpublished).

The implementation of DNA microarray technology to stu-
dies of translational regulation has revealed that only a portion of
the mRNAs of an individual gene co-purifies with polysomes (11,
13–15). Because of this, the genomic-level profiling of mRNAs
associated with polysomes can illuminate the aspects of gene
expression that cannot be visualized using conventional profiling
of total cellular mRNA. To facilitate the evaluation of polysomal
mRNA in high throughput studies, we developed a method for
rapid purification of endogenous polysome complexes for DNA
microarray studies (16). This was accomplished by construction
of transgenic Arabidopsis thaliana that expresses ribosomal pro-
tein L18 (RPL18) with a FLAG epitope tag at the amino termi-
nus. Transgenic lines were produced in which this chimeric
ribosomal protein gene is driven by the near-constitutive cauli-
flower mosaic virus 35S promoter or cell-type-specific promoters
((16); Mustroph, Zanetti and Bailey-Serres, unpublished). Plants
with the tagged RPL18 can be used, for example, to monitor
dynamics in polysomal mRNA populations in response to an
environmental stimulus or chemical compound. Frozen tissue
can be pulverized and lysed in a buffer optimized for immuno-
purification of polysomes that possess the tagged RPL18 by
absorption to anti-FLAG M2 agarose. Following the careful
washing of the agarose matrix, the complexes are released from
the agarose with an excess of a FLAG3 peptide. RNA extracted
from the complexes includes rRNA and intact mRNAs. The
comparison of the UV absorbance profiles of ribosomes isolated
by conventional differential centrifugation versus immunopreci-
pitation revealed that similar proportions of small and large poly-
somes were obtained by both methods (16). Of particular
importance, the immunopurified polysomes included complexes
of 1 to >20 ribosomes, as well as large (>2.5 kb) and low
abundance mRNAs. However, the ribosomes of mitochondria
and plastids are excluded from the immunoprecipitate. We have
performed DNA microarray hybridization analyses with biologi-
cal replicate samples using polysomes immunoprecipitated from
lines with p35S:HF-RPL18 as well as other promoter:HF-RPL18
constructs. The results confirm that immunopurification of poly-
somes is biologically and technically reproducible. Thus, poly-
some analysis can be accomplished using traditional differential
centrifugation methods or transgenic lines designed to efficiently
isolate a sub-population of mRNA complexes from specific cell
types.
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2. Materials

1. All solutions and equipment used in this protocol need
to be free of RNase. Glassware, Miracloth, pipette tips,
tubes, and solutions must be sterilized by autoclaving for
15 min.

2. All steps are carried out on ice or at 4�C.

3. Unless otherwise stated, all solutions are prepared with sterile
deionized water.

4. To prepare the plant material, tissue must be harvested
directly into liquid nitrogen, ground to a fine powder using
sufficient liquid nitrogen to maintain a frozen state. Pulver-
ization can be accomplished with a porcelain mortar and
pestle or with a coffee bean grinder. The pulverization of
pollen grains is improved when a small amount of sterile
diatomaceous earth is added to the mortar. The pulverized
tissue can be stored at –80�C until use.

2.1. Conventional

Isolation of Polysomes

by Differential

Centrifugation

2.1.1. Equipment

1. Preparative centrifuge with fixed angle or swinging
bucket rotor accommodating 30 mL tubes (i.e., Beck-
man J2-21 high-speed centrifuge and JA-20 rotor, fitted
with rubber inserts to accommodate 15 or 30 mL Corex
tubes)

2. Ultracentrifuge with fixed angle rotor accommodating 30 mL
tubes (i.e., Beckman L8-M ultracentrifuge and TY 70Ti
rotor)

3. Thick-walled polycarbonate tubes (i.e., Beckman centrifuge
tubes #355654), washed with 2.5% (v/v) hydrogen perox-
ide, rinsed twice with autoclaved water, and dried prior
to use

4. Eppendorf or other microcentrifuge capable of centrifugation
at 16,000� g

2.1.2. Solutions

and Chemicals

1. Sucrose (Ultracentrifuge grade, Fisher)

2. Heparin (Sigma-Aldrich) (see Note 1)

The following stock solutions are autoclaved and stored at room
temperature

3. 2 M Tris, adjust to pH 9.0 with HCl

4. 2 M KCl

5. 0.5 M Ethylene glycol-bis(2-aminoethylether)-N,N,N 0,N 0-
tetraacetic acid (EGTA), adjust to pH 8.0 with 10 M NaOH
(see Note 2)
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6. 1 M MgCl2

7. 20% (v/v) Polyoxyethylene 10 tridecyl ether (PTE) (see
Note 3)

8. 10% Sodium deoxycholate (DOC) (see Note 4)

9. 20% Detergent mix (see Note 5): 20% (w/v) polyoxyethy-
lene(23)lauryl ether (Brij-35), 20% (v/v) Triton X-100,
20% (v/v) octylphenyl-polyethylene glycol (Igepal CA
630), 20% (v/v) polyoxyethylene sorbitan monolaurate
20 (Tween 20)

The following solutions should not be autoclaved, stored at –20�C
in aliquots

10. 0.5 M Dithiothreitol (DTT)

11. 50 mg/mL Cycloheximide, dissolved in ethanol

12. 50 mg/mL Chloramphenicol, dissolved in ethanol

13. 0.5 M Phenylmethylsulfonyl fluoride (PMSF), dissolved in
isopropanol

2.1.3. Buffers 1. Polysome extraction buffer (PEB): prepared on the day of
each experiment and kept on ice

Final concentration
Amount of stock
solution for 50 mL

0.2 M Tris, pH 9.0 5 mL

0.2 M KCl 5 mL

0.025 M EGTA 2.5 mL

0.035 M MgCl2 1.75 mL

1% Detergent mix (see
Notes 6, 7)

2.5 mL

1% DOC (see Note 8) 5 mL

1% PTE 2.5 mL

5 mM DTT 0.5 mL

1 mM PMSF 0.1 mL

50 mg/mL Cycloheximide 50 mL

50 mg/mL Chloramphenicol 50 mL

0.5 mg/mL Heparin (see Note 1)

2. Sucrose cushion solution: keep at 4�C for a maximum of
12 weeks, add the last three compounds fresh for each
experiment.
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Final
concentration

Amount of stock
solution for 50 mL

0.4 M Tris, pH 9.0 10 mL

0.2 M KCl 5 mL

0.005 M EGTA 0.5 mL

0.035 M MgCl2 1.75 mL

1.75 M Sucrose (see Note 9) 30 g

Dissolve while heating to about 60�C, adjust to desired volume, autoclave
for no longer than 15 min

Add the following just before use

5 mM DTT 0.5 mL

50 mg/mL Cycloheximide 50 mL

50 mg/mL Chloramphenicol 50 mL

3. Resuspension buffer: prepared on the day of each experi-
ment and kept on ice

Final
concentration

Amount of stock
solution for 10 mL

0.2 M Tris, pH 9.0 1 mL

0.2 M KCl 1 mL

0.025 M EGTA 0.5 mL

0.035 M MgCl2 0.35 mL

5 mM DTT 0.1 mL

50 mg/mL Cycloheximide 10 mL

50 mg/mL Chloramphenicol 10 mL

2.2. Immunoprecipita-

tion of Polysomes from

Lines Expressing

FLAG-Tagged RPL18

2.2.1. Equipment

1. This technique is based on the usage of transgenic A. thaliana or
other plants expressing a FLAG-tagged ribosomal protein (16).
These stable transgenic lines are essential for this protocol.

2. Preparative centrifuge with fixed angle or swinging bucket
rotor accommodating 30 mL tubes (i.e., Beckman J2-21
high-speed centrifuge and JA-20 rotor, fitted with rubber
inserts to accommodate 15 or 30 mL Corex tubes)

3. Low-speed benchtop centrifuge with swinging buckets for 15
or 50 mL Falcon tubes (required speed 8,200� g)

4. Rocking shaker, capable of shaking at about 60 rpm/min
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2.2.2. Solutions and

Chemicals

1. The same stock solutions are used as described in Section 2.1.2

2. a-FLAG agarose beads (Sigma, product number A 2220)

3. FLAG3 peptide (Sigma, product number F 4799)

4. RNAsin (40 U/mL, Promega) (see Note 1)

5. Qiagen RNeasy kit (Catalog # 74904)

6. 8 M Guanidine–HCl, autoclaved

7. 99% (v/v) Ethanol

2.2.3. Buffers

1. Polysome extraction buffer: see Section 2.1.3, Step 1

2. Wash buffer: prepared on the day of each experiment and
kept on ice

Final
concentration

Amount of stock
solution for 100 mL

0.2 M Tris, pH 9.0 10 mL

0.2 M KCl 10 mL

0.025 M EGTA 5 mL

0.035 M MgCl2 3.5 mL

5 mM DTT 1 mL

1 mM PMSF 0.2 mL

50 mg/mL Cycloheximide 100 mL

50 mg/mL Chloramphenicol 100 mL

20 U/mL RNAsin (see Note 1) 50 mL

2.3. Analysis

of Sucrose Gradient

Fractionated

Polysomes

2.3.1. Equipment

1. Ultracentrifuge and swinging bucket rotor capable of
237,000� g (i.e., Beckman L8-M Ultracentrifuge with
rotor SW55.1)

2. Polyallomer tubes for gradients (Beckman, Catalog # 326819)

3. ISCO UA-5 UV detector, 185 Gradient Fractionator (ISCO
Lincoln, NE)

4. Optional: A computer with a DAS-8 compatible data acquisi-
tion card connected to the data integrator output devise of
the UA-5 detector unit (http://cepceb.ucr.edu/resources/
protocol.htm#arab).

5. Florinert displacement fluid (i.e., Perfluoro-compound
FC-40 (PC-FC40), ACROS Organics, Belgium)

6. Icruncher 2.1 program for normalization of polysome pro-
files (http://www.cepceb.ucr.edu/resources/Protocols/
Downloads/ICruncher-2.1.xls)
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2.3.2. Solutions 1. 10� sucrose salts, autoclaved for 15 min, stored at –20�C:
0.4 M Tris–HC1 pH 8.4, 0.2 M KCl, 0.1 M MgCl2

2. 2 M sucrose (see Note 9), autoclave for 15 min

Autoclaved deionized water. We typically do not treat the
water with diethylpyrocarbonate to destroy RNases.

2.3.3. Preparation

of Sucrose Gradients

Prepare sucrose layers according to the following overview:

1. Place the 5 mL ultracentrifuge tubes into a rack that can
withstand –80�C

2. Starting with the 60% sucrose layer, pipette 0.75 mL into a
5-mL polyallomer centrifuge tube avoiding any air bubbles,
and freeze for 1 h at –80�C

3. Add the next gradient layer, freeze again, and continue with
the last two layers.

4. Store gradients at –80�C
5. The day of use, remove the gradients to be used from the

freezer, thaw them in a 37�C incubator for exactly 1 h, and
then cool them at 4�C for 1–1.5 h.

6. Important: Do not shake or drop thawed gradients at any
time. For reproducible results, the gradients should be
thawed in exactly the manner described.

3. Methods

3.1. Conventional

Isolation of Polysomes

(see Note 10)

1. Switch on the preparative centrifuge to cool down

2. Switch on ultracentrifuge to cool down

3. Estimate volume of pulverized tissue powder

4. Place pulverized tissue in a sterile beaker or mortar and add
two times the volume of freshly prepared polysome extraction

Sucrose (%)
2 M
Sucrose (mL)

10�
Sucrose
Salts (mL)

Sterile
water (mL)

Chloramphenicol and
Cycloheximide (mL)

Volume per
gradient (mL)

60 44 5 1 5 0.75

45 49.5 7.5 18 7.5 1.5

30 33 7.5 34.5 7.5 1.5

15 11 5 34 5 0.75
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buffer (see Section 2.1.3, Step 1; see Table 6.1 for guidelines
of tissue amounts to be used). Examples for estimated poly-
somal RNA yields are given in Table 6.2.

5. Let the mixture thaw on ice with occasional mixing

6. For small volumes, homogenize the mixture by use of a glass
homogenizer

7. For larger volumes, the mixture is filtered through four layers
of sterile cheesecloth and two layers of sterile Miracloth
(Calbiochem, La Jolla, CA) into a beaker

8. Let the mixture stand on ice for 10 min (or until all samples
are prepared)

9. For sample volume less than 1.5 mL, centrifuge samples at
4�C, 16,000� g, for 15 min in a microcentrifuge. For larger
sample volumes, centrifuge at 4�C, 16,000� g for 15 min
(i.e., using a Beckman J2-21 high-speed centrifuge fitted with
a JA-20 rotor, run at 11,500 rpm)

10. Pour the supernatant into a new tube, using Miracloth to
filter. Repeat centrifugation step to ensure removal of mate-
rial that pellets at 16,000� g

Table 6.1
Overview of amounts of plant material used in the described methods

Method of polysome
isolation Purpose Plant material

Amount (OD260

units)

Packed
volume of
pulverized
tissue (mL)

Sucrose cushion
concentration

Analysis of polysome
and monosome
levels

Mature leaves 400 0.5–1

Seedlings 400 1

RNA isolation from
gradient fractions

Mature leaves 1,000–4,000 2–3

Seedlings 1,000–4,000 5

Immunoprecipitation RNA for microarray
analysis

Seedlings 3

Cell-specific
promoter
(ubiquitous)

3

Cell-specific
promoter
(limited cell
number)

5
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11. If desired, save 10% volume of the clarified extract to isolate
total RNA.

12. Arrange thick-walled polycarbonate tube in a diagonal tube
rack and put 8 mL of sucrose cushion solution (see Section
2.1.3, Step 2) into each tube

13. Pour gently and slowly the clarified extract (above) on top of
this solution, avoid mixing of the sample and sucrose solution
(one can use a plastic Pasteur pipette to transfer the solution)

14. Balance the weight of the tubes with the two unit cap within
0.05 g. Install the two unit cap on each tube, set them on ice if
the ultracentrifuge is not yet at 4�C

15. Centrifuge samples at 4�C, 170,000� g for 3 h (50,000 rpm,
TY 70Ti rotor). An alternative is to centrifuge at 116,000� g
(35,000 rpm, TY 70Ti rotor) overnight (approximately
18 h); this yields the same amount of monosomes and poly-
somes but more 40S and 60S subunits

16. After centrifugation, transfer tubes to ice, mark the pellet side
on the tube

17. Carefully remove the supernatant and then the sucrose cush-
ion, taking care not to disturb the pellet. The polysome
pellet (P170) should be clear and sticky, with a light brown
color

18. Wash the tube walls with sterile water gently, avoiding the
pellet, and again remove the liquid

Table 6.2
Yields of polysomal RNA using different polysome isolation methods

Method of polysome
isolation Tissue

Expected RNA yield per mL
of ground tissue

Sucrose cushion
concentration

Mature leaves 30– 50 mg RNA/mL tissue

Whole seedlings 10–20 mg RNA/mL tissue

Shoots of seedlings 2–6 mg RNA/mL tissue

Roots of seedlings 1–2 mg RNA/mL tissue

Immunoprecipitation Whole seedlings 1–1.5 mg RNA/mL tissue

Shoots of seedlings 500–1,000 ng RNA/mL tissue

Roots of seedlings 300–500 ng RNA/mL tissue

Cell-specific promoter (limited cell
number)

30–100 ng RNA/mL tissue
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19. Resuspend the pellet in ice cold resuspension buffer (see
Section 2.1.3, Step 3) by gently pipetting the solution up
and down near the marked pellet region

20. Let sit on ice for 30 min

21. Transfer the resuspended sample to a 1.5 mL microfuge tube
and briefly centrifuge at 4�C, transfer the supernatant to a
new sterile microfuge tube and discard the pellet

22. Recommended step – measure the OD260 of the sample to
estimate the RNA concentration and yield; this can only be
accomplished if Heparin is not used

23. The suspension contains ribosomal subunits, ribosomes, and
polysome complexes, and can be either used to perform poly-
somal profiles (see Section 3.4), or to directly isolate RNA (see
Section 3.2.4) or proteins (see Section 3.4).

3.2. Isolation of

Epitope-Tagged

Polysomes by

Immunopurification

(see Note 11)

3.2.1. Tissue Extraction

1. Estimate volume of pulverized tissue powder, and add two
times the volume of freshly prepared polysome extraction
buffer (PEB, see Section 2.1.3, Step 1). For preparative
immunoprecipitation use at least 2.5 mL of packed leaf
tissue and 5 mL of PEB. Preparative immunoprecipitation
from seedlings requires more tissue than for leaves (see
Table 6.1 for guidelines of tissue amounts to be used).
Examples for estimated polysomal RNA yields are given in
Table 6.2.

2. Let the mixture thaw on ice

3. Homogenize the mixture by use of a glass homogenizer

4. Let the mixture stand on ice for 10 min (or until all samples
are prepared)

5. Centrifuge the samples at 4�C, 16,000� g, for 15 min in a
microcentrifuge

6. Pour supernatant into a new, sterile tube, using sterile Mira-
cloth to filter. Repeat the centrifugation step to ensure
removal of material that pellets at 16,000� g

7. If desired, save 10% of the clarified extract to isolate total RNA

8. Recommended step – measure the OD260 of the sample to
estimate the RNA concentration and yield

3.2.2. Preparation of the �-

FLAG M2 Agarose Beads

1. Thoroughly suspend the a-FLAG M2 agarose gel in the
reagent vial to make a uniform suspension of the resin. Trans-
fer 100 mL of the beads to a new 1.5 mL tube. Use cut pipette
tips for easier transfer.

2. Centrifuge at 8,200� g for 60 s

3. Remove the supernatant with a Pasteur pipette, add 1.5 mL of
wash buffer (see Section 2.2.3, Step 2), and resuspend beads
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4. Centrifuge at 8,200� g for 60 s

5. Remove the supernatant with a pipette and wash one more
time with 1.5 mL of wash buffer before continuing with the
immunoprecipitation

3.2.3. Immunoprecipitation

of Polysomes

1. Mix 250–300 units of A260 of the clarified extract (see
Section 3.2.1) with 100 mL of washed a-FLAG M2
agarose beads (see Section 3.2.2) in a 15 mL plastic Falcon
tube. Bring volume to 5 mL with PEB (see Note 12)

2. To bind the epitope-tagged ribosomes to the affinity matrix,
incubate for 2 h at 4�C with gentle back-and-forth shaking on
a rocking platform

3. Centrifuge for 60 s at 8,200� g at 4�C
4. Transfer the supernatant to a new tube. This is the super-

natant of the immunoprecipitation or unbound fraction

5. Add 6 mL of PEB to the beads, mix by gently inverting the tube,
incubate at 4�C for 5 min with gentle shaking on a rocking
platform and centrifuge for 60 s at 8,200� g at 4�C (first wash)

6. Remove the supernatant with pipette and add 6 mL of wash
buffer (see Section 2.2.3, Step 2). Incubate at 4�C for 5 min
with gentle shaking (second wash)

7. Centrifuge for 60 s at 8,200� g at 4�C
8. Remove the supernatant with pipette and add 6 mL of wash

buffer. Incubate at 4�C for 5 min with shaking (third wash)

9. Centrifuge for 60 s at 8,200� g at 4�C
10. Repeat wash again for a total of four washes

11. Remove the supernatant. To elute the affinity-purified ribo-
somes, use a fine tipped pipette to remove as much of the
supernatant as possible. Add to the beads 300 mL of wash
buffer containing 200 ng/mL of FLAG3 peptide, and 20 U/
mL RNAsin (see Note 1). Incubate for 30 min at 4�C with
shaking on a rocking platform.

12. Centrifuge for 60 s at 8,200� g at 4�C. Transfer the super-
natant to a new tube. If the supernatant still contains the
beads (white or red particles), centrifuge again at 13,000� g
for 2 min at 4�C, and transfer to a new tube. It is extremely
important to remove all beads.

13. The resulting solution is the eluate of the immunoprecipita-
tion that contains released FLAG-tagged polysomes includ-
ing the associated proteins and RNAs. This can be used to
isolate RNA (see Section 3.2.4), proteins (see Section 3.4), or
further fractionated on sucrose gradients (see Section 3.4) to
assess the size distribution of the purified ribosomal subunits,
monosomes, and polysomes
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3.2.4. RNA Extraction For extraction of RNA from the eluate, use the Qiagen RNeasy kit
(see Note 13).

1. Add 2 volumes of 8 M guanidine-HCl to the eluate of the
immunoprecipitation and vortex for 1 min

2. Add 3 volumes of 99% ethanol and vortex for 1 min

3. Precipitate the RNA at –20�C overnight

4. Centrifuge at 16,000� g for 45 min

5. Remove supernatant and let the pellet dry for 20 min

6. Prepare extraction buffer adding 10 mL of b-mercaptoethanol
to 1 mL of Qiagen RLT buffer (provided with the RNeasy kit,
contains guanidine thiocyanate)

7. Resuspend the pellet in 450 mL of RLT buffer and vortex for
1 min

8. Add 250 mL of 99% ethanol and mix by inverting the tube. Do
not vortex

9. Apply the sample into an RNeasy mini spin column. Incubate
for 3 min

10. Centrifuge for 15 s at 16,000� g

11. Add 700 mL of RW1 buffer (provided with the RNeasy kit,
contains guanidine thiocyanate) and centrifuge for 15 s at
9,000� g. Discard the flow through

12. Add 500 mL of Qiagen RPE buffer (provided with the RNeasy
kit, 4 volumes of ethanol is added to RPE buffer before usage
according to the manual) and centrifuge for 15 s at 9,000� g.
Discard the flow through

13. Add 500 mL of RPE buffer to the column and centrifuge for
2 min at 9,000� g

14. Transfer the column to a new 2 mL microtube; centrifuge for
1 min at 16,000� g to remove remaining ethanol

15. Transfer the column to a new 1.5 mL microfuge tube and add
50 mL of RNAse-free water. Incubate for 5 min

16. Elute RNA centrifuging for 1 min at 16,000� g.

17. RNA can now be used for further analysis (i.e., cDNA synthesis).

3.3. Preparation

of Crude Extracts

for Sucrose Gradient

Fractionation

Polysomes are sufficiently abundant in crude extracts from some
tissues so that concentration by centrifugation through a sucrose
cushion is unnecessary. We have successfully fractionated poly-
somes over sucrose gradients from crude extracts prepared from
mature leaves of tobacco and Arabidopsis and developing endo-
sperm of maize. The preparation is the same as described in Section
3.2.1 for small tissue samples. Following centrifugation of the
sample at 4�C, 16,000� g, for 15 min, 750 mL of the clarified
supernatant is loaded onto a 4.5 mL (20–60% w/v) sucrose gradient
for fractionation of polysomes, as described in Section 3.4.
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3.4. Polysome

Absorbance Profile

Analysis

Ribosome complexes obtained by pelleting through a sucrose
cushion (see Section 3.1) or polysome immunopurification (see
Section 3.2) can be further fractionated by ultracentrifugation
through a sucrose gradient. This technique provides visual and
quantitative information on relative levels of the 40S and 60S
ribosomal subunits, 80S ribosomes (monosomes), and small to
large polysomes. Therefore, it provides evidence of the integrity of
the isolated polysomes. An example of an absorbance profile
obtained from a sucrose cushion ribosome pellet from Arabidopsis
seedlings is shown in Fig. 6.1A. A quantitative estimation of
ribosomes in polysomal complexes can be obtained by integration
of the area under the peaks of complexes of different masses.

Polysome DNA microarray analysis has been implemented as
a tool for genome-wide study of translational regulation (9, 11,
13, 15). Generally, polysome-associated RNAs are used as tem-
plates for cRNA synthesis and hybridized to a DNA microarray
platform. In each hybridization reaction, an equal amount of
cRNA is used, even though the cellular level of polysomes may
differ between samples (i.e., due to use of different growth con-
ditions, genotypes, or organ samples). To accurately quantify the
amount of individual mRNAs in polysomes, it is necessary to
normalize the signal values obtained in each polysome RNA
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Fig. 6.1. (A) Example for a polysome profile of Arabidopsis seedlings, obtained after polysome isolation by differential
centrifugation as described in Section 3.1, and sucrose gradient centrifugation as described in Section 3.4. The absorbance
peaks represent single ribosome subunits (40S, 60S), monosomes (80S), and small to large polysomes. (B) RNA gel of total
RNA and IP’d polysomal RNA from leaves of Arabidopsis seedlings expressing p35S:HF-RPL18. Polysomes were immuno-
purified and RNA was isolated as described in Section 3.3. N, nuclear rRNAs; P, plastid rRNAs (23S, 16S) and their
degradation products (23S*).
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hybridization (9, 11, 13). This can be accomplished by quantify-
ing the amount of polysomes in the fraction used to obtain
mRNA for the hybridization, relative to the total amount of
ribosomal complexes in the sample (9, 11, 13).

3.4.1. Procedure

1. Isolate polysomes as described in Section 3.1 or 3.2, or crude
extracts as described in Section 3.3

2. Thaw sucrose gradients and equilibrate as described in
Section 2.3.3

3. For analysis of the absorbance profile of polysomes, load 400
A260 units of the resuspended polysome pellet on top of each
gradient. For preparation of ribosomal complexes fractionated
into aliquots, this amount can be increased to 1,000–2,000 units

4. Balance tubes to within 0.05 g

5. Perform ultracentrifugation at 4�C, 237,000� g (50,000 rpm,
SW55.1 rotor) for 1.5 h. The run length can be increased or
decreased by 10–15 min to alter the degree of separation of the
ribosome complexes

6. While the gradient is spinning, prepare the ISCO absorbance
detector (model # UA-5, ISCO, Lincoln, NE). Switch on
20 min prior to use to warm up the UV lamp. Assemble the
peristaltic pump and gradient holder according to the manu-
facturer’s instructions. Adjust the absorbance detector to 0.2
or 1.0 sensitivity for analytical and preparative runs, respec-
tively. Use 150 cm/h chart speed

7. Run a sucrose gradient with the amount of sample buffer
loaded on top of the gradients to establish the baseline absor-
bance profile. This gradient does not need to be centrifuged
along with the experimental samples

8. After centrifugation, carefully remove the rotor from the
centrifuge, place the buckets on ice, and remove the first
gradient to be analyzed. Assemble the gradient in the UV
detector holder, puncture the tube bottom, and run the dis-
placement fluid into the tube at 0.75 mL/min flow rate.
Record the A254 nm profile with chart recorder and using a
data acquisition device if available ((9); see Section 2.3.1)

While running the gradients, collect fractions (usually 12
fractions of 0.4 mL), if desired. Place them on ice immediately
to avoid RNA degradation.

9. For RNA preparation: Immediately add 2 volumes of 8 M
guanidine chloride and 3 volumes of 99% ethanol and mix
well. Allow RNA precipitation at –20�C overnight. Pellet by
centrifugation at 16,000� g, 4�C for 45 min, followed by
RNA extraction as described in Section 3.2.4 (see Note 13).
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10. For protein preparation: Add 2 volumes of 99% ethanol, mix
well and allow to stand at 4�C overnight. Pellet proteins by
centrifugation at 16,000� g, 4�C for 15 min, and wash once
with 70% ethanol. Pellets can be resuspended in 2X-SDS
loading buffer, and loaded on an SDS polyacrylamide gel.

11. If absorbance profile data were electronically recorded, analyze
polysome profile and calculate proportion of ribosomes, small
and large polysomes ((9); see Section 2.3.1)

4. Notes

1. Heparin and RNase inhibitor are only required for tissues
with high RNase content, such as mature maize leaves. If
there is evidence of rRNA or mRNA degradation in samples,
the addition of heparin to the extraction buffer usually alle-
viates the problem. RNA degradation can result if samples are
thawed prior to addition of the extraction buffer or the
extraction is performed above 4�C.

2. EGTA dissolves only after adjusting the pH.

3. Shake bottle before pipetting the solution.

4. Use lung protection while weighing DOC.

5. Dissolve while heating to about 60�C.

6. These detergents can be omitted if only soluble ribosomes are
to be isolated. However, the yield of ribosomes will be con-
siderably lower.

7. Warm solution at 42�C before use; pipette with a 1,000 mL tip
enlarged by cutting 0.5 cm from the end

8. This detergent is included to disrupt ribosome–cytoskeleton
association. It can be omitted when working with Arabidopsis
or maize seedlings, but should be included for mature leaves
and seed endosperm.

9. Use high purity sucrose (i.e., Ultracentrifuge grade, Fisher),
to ensure RNase-free conditions

10. This technique does not require special transgenic plants with
a FLAG-tagged ribosomal protein. However, the centrifuga-
tion step might also result in pelleting of other RNA-binding
protein complexes that are not translationally active.

11. This affinity-tag technique can be only used to enrich nuclear-
encoded mRNAs. mRNAs encoded by and translated in mito-
chondria and plastids cannot be isolated with this method.
Figure 6.1B shows a gel of total RNA in comparison to IP’d
polysomal RNA. The organellar ribosomal RNAs are missing
in the immunopurified d polysomal RNA sample.
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12. For large-scale experiments, adjust the amount of beads
according to the amount of extract. When using lines with
cell-type-specific promoters expressed in a limited number of
cells of an organ/tissue, use two–three times more tissue for
the same amount of beads.

13. Alternatively, one can isolate RNA from fractions by other
protocols such as that described in Fennoy and Bailey-Serres,
1995 (7), or by use of Trizol reagent, according to the sup-
plemented protocol.
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Chapter 7

Chromatin Charting: Global Mapping of Epigenetic Effects

Chongyuan Luo and Eric Lam

Abstract

To tackle the question of how chromatin organization is involved in global regulation of genome-related
processes such as transcription, we have recently created a collection of 277 transposon-tagged Arabidopsis
lines comprised of a single insert with a common luciferase reporter cassette and a LacO repeat array for visual
tracking of the tagged region via fluorescent protein fusion technology. Using this collection of plants, one
can begin to map transgene position effects as well as global epigenetic control in response to developmental
or externally applied cues. In this chapter, we will outline the approach and methods for deploying this novel
resource for the study of global gene control, using Arabidopsis as a convenient model system.

Key words: Chromatin, transposon-tagged lines, Arabidopsis, epigenetics, luciferase, dsRNA
suppression, position effects.

1. Introduction

1.1. Chromatin-Based

Regulation of Gene

Expression: Epigenetic

vs. Genetic

Mechanisms

Transcription control is a major output of genetic information that
contributes to all phases of development in the life of an organism.
Superimposed on the textbook model of gene control via cis-
acting promoter elements and DNA-binding transcription factor
is the growing appreciation for the importance of epigenetic
mechanisms that act via chromatin modifications. Epigenetic
mechanisms result in heritable changes in gene expression without
alterations in the sequence of the gene(s) involved. One classic
example from plants is paramutation, first discovered in maize
more than 50 years ago (1). At the R locus, responsible for seed
color, Brink observed that alteration of one allele (R-r) by another
(R-stippled) is heritable (but reversible) even after its segregation
from R-stippled. Paramutation has since been documented in
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various plant species (including Arabidopsis) as well as animal
systems (reviewed in (2)). Nucleolar dominance, in which rRNA
genes from one parent are specifically silenced in a genetic hybrid,
is another well-known epigenetic phenomenon that exists in many
eukaryotes (3). Other epigenetic control mechanisms that have
been described in eukaryotes include trans-inactivation by the
brown (dominant) allele (Br(D)) of the respective bw(þ) WT allele
(importantly in the context of this chapter, this is correlated with
its spatial repositioning in the nucleus to associate with centric
heterochromatin); gene silencing at the centromeres of many
organisms; and X-inactivation in mammals (summarized in (2, 4,
5)). The common mediator of these epigenetic silencing mechan-
isms is the presence or formation of more highly condensed het-
erochromatin and its propagation along the chromosome.
Epigenetic mechanisms can profoundly affect plant development
such as in the case of genomic imprinting during gametogenesis,
control of flowering time by vernalization, and the regulation of
meristem size and identity (summarized in (6, 7)).

1.2. Distinct Molecular

Mechanisms of

Epigenetic Control

Exist in Eukaryotes

Two major regulatory pathways that are commonly involved in epi-
genetic control are DNA methylation at cytosine residues (8, 9) and
specific types of covalent modification that include methylation and/
or acetylation of specific lysine residues of histones H3 and H4. In
general, cytosine hypermethylation and decreased acetylation of his-
tones are correlated with gene silencing while specific methylation
states of the amino terminus of histone H3 is either associated with
activated (H3K4m) or suppressed (H3K9m) gene expression (10).
Although the precise nature of the ‘‘histone code’’ that has been
speculated to allow quantitative prediction of gene expression
remains to be defined (11), it is clear that many histone modifications
play a major role in epigenetic control (6, 12). More recently, DNA
methylation and histone modification at heterochromatic regions
neighboring centromeres and the nucleolus, and in transcriptional
gene silencing (TGS) of transgenes, have been shown to depend on
components in the RNA interference (RNAi) and small interfering
RNA (siRNA) pathways (4, 13, 14). The discovery that an RNA-
dependent RNA polymerase (RdRP), an enzyme involved in some
double-stranded RNA (dsRNA)-initiated gene silencing pathways, is
an important component of paramutation in maize suggests that
similar mechanisms may be shared in different types of epigenetic
phenomena (15). This is supported by genetic data which show that
mutants at three different paramutation loci can all activate a tran-
scriptionally silenced transgene in maize (16). In all three cases,
alteration of the DNA methylation state at the transgene locus is
correlated with reactivation of the transgenes. However, with two of
the mutants, the transgene remained active after reintroduction of
the wild-type allele which suggested that the chromatin state at the
transgene locus has been altered in a heritable manner. These
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observations, as well as studies examining the effects of RNAi mutants
on transposon and transgene silencing (17–19), suggest that there
are multiple epigenetic silencing pathways with distinct characteris-
tics. In addition, these and other genetic studies in maize and Arabi-
dopsis demonstrate that transgenes can be convenient markers to
monitor epigenetic mechanisms in plants (2, 4, 8).

1.3. Global

Organization of

Chromatin and

Transcription Activity

To model epigenetic control mechanisms in detail, an understand-
ing of the relationship between chromatin organization and gene
expression is essential. Interphase chromatin of eukaryotes has
been shown to exist in distinct subnuclear compartments called
chromatin territories (CTs), with relatively little intermixing
between neighboring chromosomes (20, 21). The interchromatin
space (ICS) is envisioned to contain most of the protein
complexes/factories that are involved in splicing, repair, and
transcription. In this regional organization type of model, hetero-
chromatic regions within each chromosome provide the back-
bone/anchor for maintaining the CT, while the perichromatin
region (PR) observed in EM studies has been suggested to corre-
spond to the portion of the euchromatin that is accessible for gene
expression in the particular cell context (summarized in (21)). The
make-up of the euchromatin in the PR can be dynamically altered
by epigenetic mechanisms such as DNA methylation and histone
deacetylation. This regional model of chromatin organization thus
provides a structural basis to rationalize epigenetic regulation of
gene expression. One prediction of the regional model for chro-
matin organization is the existence of ‘‘position effects’’ (PEs) that
can quantitatively modulate the expression level of transgenes
inserted into different parts of the genome. With support from
the NSF Plant Genome Research Program (PGRP) in the past 7
years, we established a set of ‘‘Chromatin Charting’’ lines that
consists of mapped single insertions dispersed throughout the
genome of Arabidopsis, using transposon-mediated tagging tech-
niques developed previously (22). By placing selected reporter
genes to compare transcription activity and a LacO array to allow
visual tracking of the inserted loci in nuclei of live plants (23), this
collection provides a novel resource for the discovery of position
effect loci (PELs) and facilitates their comprehensive study at the
functional and physical levels. Since these elements of our inserts
are common between individual lines, differences in their reporter
gene activity and physical property thus likely reflect influences by
the insertion neighborhood’s characteristics, some of which can be
epigenetic in origin. We refer to the relative level of reporter gene
expression as ‘‘transcription potential’’, a term chosen to reflect
and emphasize the relative degree that a common gene unit can be
activated at different locations in the genome. Details of our
project schemes and methodologies can be obtained from our
web sites (http://Charting.cshl.org; http://aesop.rutgers.edu/
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�lamlab/ccharting.html). Briefly, eight transgenic ‘‘launchpad’’
lines (CCP4 lines) with the Chromatin Charting construct
(pCCharting; Fig. 7.1A) were crossed with six transgenic lines
that overexpress the maize Ac transposase to mobilize the dormant
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Fig. 7.1. Chromatin charting vector and its uses. (A) Relevant structure of the pCCharting
construct (24). RB and LB, right and left border of T-DNA; 20P, promoter for the IAAH
selection gene; IAAH, indole acetamide hydrolase gene; DS5 and DS3, 50 and 30 border
sequences for maize Ds element; LUC, firefly luciferase gene; 35S, CaMV 35S promoter;
LacO, lac operator array; NPTII, neomycin phosphotransferase gene; GUS, b- glucur-
onidase gene; Mini, minimal CaMV 35S promoter (–46 toþ8). Sizes of elements are not
drawn to scale. In vivo imaging of luciferase activity in whole seedlings (B) and
inflorescence of mature plants (C) from three different CCP4 lines and wild-type plants
(WT). Two-week-old seedlings and floral tissue from 5-week-old plants are sprayed with
in vivo luciferase assay solution and imaged with a Biophotonic camera system (Luma-
zone FA, MAG Biosystems). The numbers on the bottom of each set of plants shown in
the panels indicate the relative luciferase activities measured by the standard in vitro
assay. (D) Visualization of LacO array by transient expression of GFP-LacI-NLS protein.
Transient expression was performed with a CCT71 (24) plant according to Section 3.4.2.
The panel shows a rosette leaf that has been infiltrate with Agrobacterium containing the
EL700 construct and induced with Dex as described in Section 3. Fluorescence image
was collected with a Leica stereofluorescence microscope at relatively low magnifica-
tion and shows nuclear fluorescence of the expressed GFP-LacI-NLS protein. Inset
shows a Z-section of a single nucleus from the same leaf sample examined with the
DeltaVision microscope system. The bright fluorescence spot, outlined with a white
circle, indicates the decorated LacO array. The bar in the inset corresponds to 10 mm. (E)
Mean-square change of 3-D distances between seven pairs of LacO spots is plotted
against Dt. The averaged data from the seven sets of data points are shown with
standard deviations.
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Ds transposable element in our launchpad lines. Novel and stable
transposants can then be recovered in the F2 generation using a
combination of positive selection (Kanr) for our CCharting Ds
element and negative selection against the parental launchpad and
Ac-expressing loci, both of which contain an IAAH marker that
confers 1-naphthaleneacetamide (NAM) sensitivity (22). From
screening 11,682 F2 families derived from about 2,000 indepen-
dent crosses performed in the Lam and Martienssen labs, we
recovered 611 stable transposants (CCT lines). We opted for
using the more complicated and laborious transposon-mediated
approach instead of random T-DNA integration via Agrobacter-
ium since the latter is known to generate complex insertion events
at a much higher frequency. To date, genomic locations for 271
CCT lines among this first collection has been determined by
TAIL-PCR and validated using locus-specific primers. Together
with the six mapped and confirmed CCP4 lines, this collection of
277 ‘‘Chromatin Charting’’ lines have been deposited into the
Ohio State Stock Center (ABRC). Using this set of plant lines,
one can now screen for regions in the genome that may display
locus-specific silencing or activation of the common luciferase
marker gene that is tissue-, developmental stage-, or signaling
pathway-specific. As a proof-of-concept study, we have recently
discovered a set of root-specific silencing loci at the north end of
Chr. 2 adjacent to the NOR (24). Several screens for loci that
respond to tissue- and growth condition-specific signals are under-
way in our lab. However, we believe that this resource can be
deployed by various plant biology investigators to search for evi-
dence of control at the chromatin level by their pathways of inter-
est. This chapter thus aims to describe the materials and methods
that we have established in our laboratory for this purpose.

2. Materials

2.1. Seed Germination 1. 50% Bleach

2. Solid Growth Medium: 0.5X Murashige and Skoog (MS) mineral
salts, 1% sucrose, 0.25% PhytagelTM (Sigma), 50 mg/ml Kanamy-
cin (optional)

3. 3 M MicroporeTM surgical tape, ½ in.

4. SterilGARD Laminar Flow Hood (Baker) or a comparable
aseptic environment

2.2. Luciferase Assays 1. Biotium Firefly Luciferase Assay Kit

2. D-Luciferin, potassium salt

3. Triton X-100
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4. Biotek SynergyTM HT Multi-Detection Microplate Reader

5. Costar 96-well assay plate

6. Costar 96-well assay plate (White Plate, Clear Bottom with Lids)

7. Bio-Rad Quick Start Bradford Protein Assay Kit

8. Mettler AE200 balance or any other type with appropriate
scale resolution

9. In vivo luciferase assay solution: 0.3 mg/ml D-Luciferin,
0.01% Triton X-100

2.3. Root and Shoot

Tissue Extracts

1. Two- to four-week-old Arabidopsis plants grown vertically for
at least 5 days

2. Wheaton Instruments Overhead Stirrer

3. 5X Firefly Luciferase Assay Lysis Buffer Kit (Biotium; catalog
#30003-1)

4. Solid medium for vertical growth of Arabidopsis: 0.5X Murashige
and Skoog (MS) mineral salts, 1% sucrose, 1% agar

5. 150 mm � 15 mm Petri dish

2.4. Microscopy with

Chromatin Charting

Visualization (CCV)

Constructs by

Transgenic or

Transient Expression

Approaches

1. Nikon TE200 microscope

2. Applied Precision DeltaVision image restoration microscope
system Version 3.5

3. Nikon PlanApo 60X, 1.2 N.A/water-immersion objective lens

4. softWoRx 3.6.1 Suite software package included in DeltaVi-
sion system

5. Agrobacterium tumefaciens GV3101 strains containing CCV
binary vectors EL700 or JM71 (23, 24)

6. Agrobacterium suspension buffer: 10 mM MgCl2, 10 mM
MES, pH 4.5, 200 mM 30, 50-dimethoxy-40-hydroxy-
acetophenone (Acetosyringone)

7. A 1 ml syringe without needle (Becton Dickinson and Co.,
Tuberculin slip tip)

3. Methods

3.1. Germination

of Seeds

for Arabidopsis Lines

1. Seeds of Arabidopsis CCP4 or CCT lines are vortexed with
50% bleach for 2–5 min, and then rinsed approximately five
times with sterile water to remove trace of bleach. After
washing, spread seeds on solid growth media under a Ster-
ilGARD laminar flow hood. To prevent false positives during
antibiotic selection, enough spacing among seeds is required.
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For lines showing reduced Kanamycin resistance due to silen-
cing of the Npt II gene, germinate seeds on 0.5X solid MS
plates without Kanamycin.

2. Seal plates with 3 M MicroporeTM surgical tape ½ in.

3. Synchronize seed germination at 4�C for 48 h before trans-
ferring plates to normal growth condition.

3.2. Luciferase Assay –

Whole Tissues and

Extract-Based Assays

To quantify the expression level of Firefly Luciferase gene, luciferase
activity can be measured either in tissue homogenate (in vitro assay)
or intact tissues (in vivo assay; Fig. 7.1B and C). In vitro luciferase
assay is in general more sensitive than in vivo assay but also more
time-consuming and needs additional attention and equipment.
Like any other biochemical assays that involve protein extraction,
the in vitro luciferase assay requires rapid sample handling and
cooling to prevent protein degradation during extract preparation.
To achieve maximum sensitivity and reproducibility, we suggest
using commercial luciferase assay kit for the in vitro luciferase
assay. Luciferase activity acquired from in vitro assays is normalized
with total protein concentration of the tissue homogenate. Protein
concentration is measured with Bio-Rad Quick Start Bradford
Protein Assay Kit following the manufacturer’s instruction. In vivo
(with intact tissues) luciferase assay is less quantitative and sample
variations in luciferin absorption, surface properties, and probe-to-
sample distance can all potentially affect the observed light output.
Without a soluble extract, in vivo luciferase activity is often normal-
ized with fresh tissue weight. However, correlation between tissue
weight and protein content of plants can be affected by
developmental stage, tissue type, and age (see Note 1).

3.2.1. In Vitro Luciferase

Assay

1. Harvest 20–100 mg Arabidopsis tissues in 1.5 ml micro-
centrifuge tubes.

2. Briefly grind with Overhead Stirrer (Wheaton Instruments)
for 5 s. Add 200 ml 1X luciferase lysis buffer and continue
grinding for another 15 s. Refrain from using high speed, as
the grinder may become overheated. Place samples onto ice
immediately after grinding.

3. Clarify the samples by centrifugation at above 10,000� g for
5 min at 4�C. Transfer the supernatant to a new pre-cooled
micro-centrifuge tube.

4. Use 2–10 ml of tissue extracts for measuring luciferase assay.
Signal might exceed the upper limit of the plate reader if too
much extract is used. We suggest doing an exploratory assay
before the experiment to find out the appropriate amount of
extract to be used for the assay. Add 1X luciferase lysis buffer
to wells to make the final volume 50 ml.
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5. Use multi-channel pipettes to add 50 ml of luciferase assay
solution provided in the luciferase assay kit to each well.
Photon intensity generated by oxidation of luciferin will con-
tinue to decrease shortly after the reaction has started, so
always try to minimize the intervals between adding luciferase
assay solution to the different wells. Load the 96-well plate
onto a plate reader and start reading as soon as possible.

3.2.2. Quantification of

Protein Concentration

To standardize the luciferase activity of each sample, total protein
concentration of the extract is measured after the luciferase assay.
The detergent contained in the luciferase lysis buffer interferes
with the Quick Start Bradford protein assay solution if more than
5 ml of extract is used. So using relatively small volumes of extracts
(2–3 ml) for Bradford assay is important to get reliable data.

1. Prepare a standard curve with the bovine serum albumin
(BSA) protein standard provided with Quick Start Bradford
protein assay solution.

2. Mix 2 ml of cell extracts with 18 ml of distilled water in micro-
centrifuge tube.

3. Add 1 ml of Quick Start Bradford protein assay solution and
shake to mix.

4. Incubate at room temperature for at least 5 min but shorter
than 1 h to let the reaction complete.

5. Measure absorbance at 595 nm by a microplate reader or a
spectrophotometer.

6. Calculate protein concentration by using the standard curve
generated in Step 1.

3.2.3. Intact Tissue

Luciferase Assay (In Vivo

Assay)

1. Add 30 ml water to each of the wells in a 96-well assay plate to
prevent over-drying of the leaf samples.

2. Snip a medium size rosette leaf from 3- to 4-week-old Arabi-
dopsis plants. The leaf piece should be able to fit comfortably
into the well of a Costar 96-well assay plate. Record the
weight of each leaf. Transfer the leaf piece into a well of the
assay plate with the abaxial side of the leaf on top since the
luciferin solution can then be taken up more readily.

3. Keep the plate covered with a lid to minimize water loss from
leaf samples during sample preparation.

4. Spread the plate with in vivo luciferase assay solution
(0.3 mg/ml D-Luciferin, 0.01% Triton X-100). Leave the
plate on a bench for 5 min to allow uptake of D-Luciferin
into cells. At the same time set up the program for the plate
reader.
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5. Load assay plate onto the plate reader and read for at least
30 min.

6. Normalize the measured luciferase activity with the weight of
the leaf sample.

3.3. Comparative

Analysis of Root and

Shoot Expression

Between Lines

1. Germinate Arabidopsis seeds on 0.5X MS plates or selection
plates if desired. Synchronize seed germination at 4�C for
48 h. Move plates to normal growth condition and let plants
grow for 7 days.

2. Carefully transfer seedlings to MS medium containing 1%
agar with sterilized forceps. Grow plants in vertically oriented
plates for 1–2 weeks.

3. To quantify luciferase activity in root and shoot, cut Arabi-
dopsis plants at the base of their hypocotyls and homogenize
shoot and root tissues separately in Luciferase Lysis Buffer.
We suggest using half the volume of the lysis buffer that was
used for shoot to homogenize root tissue.

4. Follow Sections 3.2.1 and 3.2.2 to measure luciferase activ-
ity by in vitro luciferase assay and total protein concentration
of lysates for normalization.

3.4. Microscopy Assays To visualize the tagged loci in living plants and measure physical
parameters of chromatin behavior, two approaches can be carried
out: (1) Cross CCP4 or CCT lines to stable transgenic CCV lines
EL700 and JM71, which can express GFP-LacI-NLS protein after
induction via dexamethasone (Dex) treatment or EYFP-LacI-NLS
upon ethanol treatment, respectively (23, 24). Since a minimum of
at least two spots are needed to quantify diffusion dynamics,
endoreduplicated epidermal cells can be analyzed in the F1 gen-
eration while F2 plants homozygous at the tagged locus can be
used to analyze diploid cells. (2) Transient expression of GFP-
LacI-NLS protein in rosette leaf cells by Agrobacterium infiltra-
tion. Approach 1 is adopted when visualization in various tissues
(root or shoot) or cell types (epidermal cell or mesophyll cells) is
desired, while approach 2 is suitable for rapid observation of
chromatin dynamics in many lines. The success of visualizing
LacO arrays in planta highly depends on the background-to-signal
ratio (free GFP-LacI-NLS protein in nuclei vs. GFP-LacI-NLS
binding to the LacO arrays). Over-induction by either a high
concentration of Dex or long induction times can lead to higher
background GFP fluorescence and increased difficulty in detecting
LacO arrays, whereas short induction may result in insufficient
signal intensity. Based on our experience with EL700 transgenic
plants (23), 8–16 h of induction with 0.3 mM Dex is suggested for
Arabidopsis seedlings.
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3.4.1. Visualization of LacO

Array-Tagged Loci by

Inducible Expression of

GFP-LacI-NLS Protein

1. Cross CCT or CCP4 lines into a stably transformed EL700 line
that can express GFP-LacI-NLS protein upon Dex induction.

2. Germinate F1 or F2 seeds on selection medium (50 mg/ml
Kanamycin and 15 mg/ml Hygromycin). Use PCR approach
to identify plants containing homozygous pCCharting locus.

3. One- to two-week-old whole seedlings or detached rosette
leaves from 2- to 3-week-old plants are floated on 0.3 mM Dex
solution. After 8–16 h, seedlings or leaves were placed
between microscope slides and cover slips with water and
mounted on the microscope stage for observation.

3.4.2. Transient Expression

of GFP-LacI-NLS Protein for

Visualization of the LacO

Array

1. Germinate CCP4 or CCT lines on 50 mg/ml Kanamycin
selection plates.

2. Transfer 7- to 10-day-old seedlings to soil. Plants should be
covered during the first 2 days after transfer with plastic domes.

3. At the same time, inoculate an Agrobacterium overnight culture
in 5 ml LB with 50 mg/ml Kanamycin, 50 mg/ml Gentamicin.

4. Adjust OD600 of the bacteria culture to 0.5 with LB. Spin
down bacteria at 12,000� g for 5 s and resuspend the pellet in
Agrobacterium suspension buffer.

5. Leave the bacteria suspension at room temperature for at least
3 h to induce vir genes.

6. Infiltrate the under (abaxial) side of whole rosette leaf with a
1 ml syringe.

7. Infiltrated leaves can be detached 30 h after infiltration and
floated on 0.3 mM Dex solution for 8–16 h to induce the
expression of the GFP-LacI-NLS protein.

8. Place infiltrated leaves between microscope slides and cover
slips with water and mount on microscope stage for imaging
(see example in Fig. 7.1D).

3.4.3. Microscopy Analyses

and Quantification of

Intranuclear Dynamics via

LacO Array Tracking with

GFP-LacI-NLS

1. To avoid the difficulty of searching for cells with adequate
fluorescent protein expression under high magnification, we
normally screen the tissue/seedling samples by epifluores-
cence microscopy at 4–20� magnification and mark the
areas of potential interest for further imaging.

2. For most Arabidopsis cells, images from 40 to 60 layers with
0.2 mm Z steps are enough to cover the nuclei as well as
providing reasonable resolution along the Z-axis. We use
exposure times between 0.3 and 1 s for each Z-section. The
best exposure time for each experiment can vary significantly
depending on the dynamic range and sensitivity of the parti-
cular CCD camera used. Exploratory experiments are usually
necessary in order to find the optimal exposure times that
minimize both saturation of the camera and bleaching of the
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fluorescent protein. Saturation of camera will compromise the
quantitative analysis of signal intensities, whereas bleaching of
fluorescent protein will reduce image quality during contin-
uous imaging (see Note 2).

3. To perform chromatin dynamic analysis, we routinely track
each Arabidopsis nucleus for 10 min.

4. After image collection, image stack files are deconvolved
using softWoRx Suite software from Applied Precision Inc.
to reconstruct the 3-D fluorescence images.

5. Two methods can be used to measure distances between two
LacO array spots. If only a few spots are being analyzed, dis-
tances d between two LacO array spots can be obtained directly
from softWoRx Suite. Alternatively, if distances between a rela-
tively large number of spots within the same nucleus are desired,
distances can be calculated from coordinates of each spots using
the Pythagorean theorem. X and Y coordinates of a particular
pixel can be read from the 3-D image using the softWoRx
software while layer number is used to calculate distance
between two spots on the Z-axis. Squared distance between
two spots, d 2, can be derived as d 2 = (x1�x2)

2 þ (y1�y2)
2 þ

[(z1�z2) � s]2 (x1, x2, y1, y2: x and y coordinates for the two
spots being analyzed; z1, z2: Z layer numbers for the two spots;
s: layer step distance). In most cases, the signal for each LacO
array spots can be detected in several consecutive layers. The
layer that the LacO array spot shows the highest fluorescence
intensity will be taken as where the spot localize to.

6. Compute changes of the squared distance (or mean-squared
displacement as a function of time), Dd2= < d(tx) � d(t0) >2,
where d(t0) is the 3-D distance between two spots at the first
time point measured and d(tx) is the 3-D distance between
the two spots at a subsequent time point x. Mean Dd2 of all
LacO spot pairs are then plotted with Dt = tx � t0 to generate
the curve. If any one of the two spots being measured is freely
diffusing without restriction, Dd2 will increase continuously
along with increase of Dt. However, if the movement of both
spots are constrained to a certain area, the increase of Dd2 will
reach a plateau and become independent of Dt (25).

4. Notes

1. In addition to difficulties in standardization, the accuracy of
the in vivo assay is also affected by variable uptake rate of D-
Luciferin and sub-cellular physiology, which can affect the
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turnover rate of luciferin by altering the reaction environment
of luciferin oxidation. Despite these complications, the in vivo
luciferase assay is nevertheless suitable for large-scale screen-
ing applications because of the increased speed and lower cost
that can significantly facilitate a higher throughput.

2. Photobleaching is a problem for any continuous in vivo imaging
approach using fluorescence proteins. If the amount of work
required to create an optimized visualization construct is accep-
table, introducing a more stable fluorescent protein variant
should be first considered. Without modifying the visualization
construct, using a CCD camera with higher sensitivity is the
most effective solution. The latter can reduce exposure time
while acquiring images with the same or better quality. Besides
purchasing a new camera, less image layers or sacrificing some
image resolution can also reduce exposure times.
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Chapter 8

Clone-Based Functional Genomics

Annick Bleys, Mansour Karimi, and Pierre Hilson

Abstract

Annotated genomes have provided a wealth of information about gene structure and gene catalogs in a
wide range of species. Taking advantage of these developments, novel techniques have been implemented
to investigate systematically diverse aspects of gene and protein functions underpinning biology processes.
Here, we review functional genomics applications that require the mass production of cloned sequence
repertoires, including ORFeomes and silencing tag collections. We discuss the techniques employed in
large-scale cloning projects and we provide an up-to-date overview of the clone resources available for
model plant species and of the current applications that may be scaled up for systematic plant gene studies.

Key words: Functional genomics, recombinational cloning, clone collections, ORFeome, hairpin
RNA, artificial microRNA.

1. Introduction

A decade ago, Hieter and Boguski (1) proposed to divide the term
genomics into two disciplines: structural genomics and functional
genomics. Structural genomics referred to the initial characteriza-
tion of genome sequences and it started with the publication of the
chromosome sequence of the bacterium Haemophilus influenzae
in 1995 (2). The first eukaryotic genome sequences were released
between 1996 and 2000 – budding yeast (Saccharomyces cerevi-
siae) (3), roundworm (Caenorhabditis elegans) (4), and fruit fly
(Drosophila melanogaster) (5) – followed by the initial draft of the
human genome sequence in 2001 (6). The first genome sequence
of a flowering plant, the weed Arabidopsis thaliana (7), was fina-
lized in 2000. Such scientific achievements enable the comparative
analysis of organisms from diverse phyla and the identification of
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life processes uniting or distinguishing them at the molecular level.
Rice (Oryza sativa), the first crop genome to be sequenced (8), is
particularly interesting because it shares common sets of genes with
major food and feed monocotyledonous crops such as corn (Zea
mays), wheat (Triticum aestivum), rye (Secale cereale), and barley
(Hordeum vulgare). It was followed by poplar (Populus trichocarpa)
(9) and grape vine (Vitis vinifera) (10). Collectively, these anno-
tated genomes provide information about hundreds of thousands of
plant genes. In most cases, their functions are inferred indirectly by
sequence homology across species, linking novel genes with others
previously characterized or with encoded protein domains of known
biochemical activity. However the value of homologous relation-
ships remains limited. For example, only 9.5% of the 27,589 struc-
turally annotated Arabidopsis genes have been shown to be involved
in known biological processes and for 6% of them the molecular
function has been determined experimentally (www.arabidopsis.
org/portals/masc/2007_MASC_Report.pdf).

The second discipline, functional genomics, takes advantage
of the resources accrued in structural genomics projects but
involves additional approaches to identify gene functions at a
large scale, including technologies to profile comprehensively the
molecular components of biological systems, such as their tran-
scriptome, proteome, and metabolome. Other approaches are
designed to determine which molecules interact with proteins, in
which subcellular compartments proteins are localized, which is
their biochemical activity and which are the effects of loss-of-
function or gain-of-function genetic perturbations. The latter
can be grouped under the denomination ‘‘clone-based functional
genomics’’ because they all require the isolation and manipulation
of specific fragments of the genomes under investigation: for
example, open reading frames (ORFs) for protein characteriza-
tion, or gene-specific tags used to target transcripts for degrada-
tion by RNA interference (RNAi).

2. Milestone
Studies in Yeast
and Animals

The phenotypic analysis of mutant series lacking particular genes can
now be achieved systematically by taking advantage of genome
sequence information. Large-scale reverse genetic screens in budding
yeast elegantly demonstrate the power of such approaches. In the
pre-genome era, random insertional mutations were generated en
masse in yeast cell populations by transient transposition of a marked
Ty1 transposable element (11, 12). Later, the ‘‘Saccharomyces
Genome Deletion Project’’ consortium exploited the annotated
genome sequence to create a unique collection of yeast knock-out
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strains via double homologous recombination (13). Samples of this
population were grown under different conditions and the fitness of
numerous mutants was scored by analyzing the genetic footprint or
pattern of polymerase chain reaction (PCR) products, specific to each
gene insertion. In each deletion strain, one ORF was replaced by a
cassette carrying specific 20-base TAG sequences serving as unique
‘‘molecular bar codes’’. The fitness contribution of each gene was
measured after growing the pooled deletion strains under challen-
ging conditions and by hybridizing DNA extracted from the mixed
cell cultures to microarrays of complementary TAG sequences to
track the presence or disappearance of each individual strain (14).
Similar yeast deletion strain collections could also be used to investi-
gate genetic interactions, such as synthetic lethality, at the genome
scale. In this case, yeast double mutants were created by mating a
mutated gene of interest into an array of viable gene deletion mutants
to study the effect of the second mutation, possibly suppressing or
enhancing the original phenotype (15, 16).

Unfortunately, not all eukaryotic genomes can be easily mod-
ified via homologous recombination. Therefore RNAi rapidly
became the method of choice to knock down large sets of genes,
once the basic elements involved in gene silencing had been iden-
tified (17–19). Briefly, double-stranded RNA (dsRNA) can med-
iate post-transcriptional splicing or translational arrest of the
homologous mRNA, preventing the production of the cognate
protein. Although the loss of function triggered by RNAi may be
partial in some cases, many high-throughput RNAi screens have
been carried out successfully in worm, as well as in mammalian and
fly cells (18, 20–24). A number of genome-scale RNAi libraries
have been created for that purpose, relying on different intermedi-
ates, such as long dsRNAs or hairpin RNAs, short hairpin RNAs, in
vitro diced small-interfering RNAs (siRNAs), synthetic siRNAs,
and artificial microRNAs (amiRNAs), which all have specific
advantages and disadvantages.

The association between proteins is fundamental to most
cellular processes, and the properties of a biological system are
dictated by the topology of protein–protein interaction (PPI) net-
works (interactomes). PPIs are routinely mined to infer potential
functional relationships, because proteins that physically associate
are probably involved in related processes. In recent years, several
large initiatives have focused on building the initial draft of global
interactomes. The most commonly used method for high-
throughput mapping of pairwise PPIs is the yeast two-hybrid
(Y2H) system (25) that is based on the translational fusion of
protein pairs either to the DNA-binding or transcriptional activa-
tion domains of a transcription factor (TF) that are inactive when
separated. The reconstitution of the TF activity is only possible
when two tested proteins interact and bring the two TF domains
together. This event is detected by monitoring the transcription
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and activity of a reporter gene, generally conferring viability to a
specially designed yeast strain. The 6,000 proteins of yeast have
been assayed for pairwise interaction (26, 27, 27a) and interac-
tome drafts have been created for fly (28), worm (29), and human
(30–32).

The Y2H system requires the reconstitution of a TF in the
nucleus, which is an important limitation. Therefore, several alter-
native protein fragment complementation assays have been
designed, including the reconstitution of the protein activity of
b-galactosidase (33, 34), b-lactamase (35), green fluorescent pro-
tein (GFP) (36), dihydrofolate reductase (37, 38), and ubiquitin.
The split-ubiquitin membrane Y2H system is particularly interest-
ing because it can detect interactions between pairs of proteins
associated with membranes (39, 40).

Another technique, called tandem affinity purification (TAP),
was developed to isolate protein complexes and facilitate the ana-
lysis of their components by mass spectrometry (MS). It also
requires the isolation of gene-specific sequences either to clone
the ORFs of interest in phase with a TAP tag contained in an
expression vector or to insert – by homologous recombination
into chromosomes – the TAP cassette at the 30 end of the genes
under study. The TAP/MS analysis of almost 500 protein com-
plexes isolated from yeast cells has already been completed based
on the TAP tagging of most annotated ORFs (41, 42).

Nevertheless, there is more to protein functions than their
physical association. Screens based on cloned genes have also
been designed to search for enzymatic activity, protein–ligand
binding, and DNA motif recognition. To streamline these differ-
ent proteomic approaches, versatile ORFeome libraries were con-
structed that contain almost all ORFs annotated in yeast and
bacterial genomes or significant fractions of the protein-coding
genes identified in animal species (43).

The few examples listed above illustrate how basic elements
embedded in the chromosomes of eukaryotic species can now be
mass-produced in standardized formats for a range of applications.
But such feats are only recently possible and rely on techniques
developed to capture and transfer fragments efficiently and reliably
between DNA molecules.

3. High-Throughput
Cloning
Techniques

Conventional restriction/ligation cloning methods are cumber-
some for large-scale cloning efforts because they require sequence
analysis and search for compatible restriction sites and involve
multiple successive DNA manipulations. To streamline the

144 Bleys, Karimi, and Hilson



process, several techniques have been developed for the transfer, in
a single step, of particular segments between different dsDNA
molecules.

Ligation-independent cloning relies on the generation of
sticky ends in the DNA fragments (PCR products) and vectors
by the exonuclease activity of T4 DNA polymerase (44). Hybridi-
zation of the complementary 50 tails results in the formation of
recombinant circular molecules that are repaired through in vivo
ligation after efficient bacterial transformation. Recently, this tech-
nique has been used to allow high-throughput cloning of
expressed sequence tags in an improved virus-induced gene silen-
cing vector derived from the tobacco rattle virus (45). Similarly,
the Uracil-Specific Excision Reagent (USERTM; New England
Biolabs, www.neb.com) DNA engineering method enables assem-
bly of recombinant molecules from multiple PCR products with-
out the need for in vitro ligation (46, 47). The procedure is based
on PCR primers with a single deoxyuridine residue near their 50

end and treatment of the resulting PCR products with a commer-
cial USER enzyme mix (48), leading to the formation of abasic
sites that destabilize base-pairing in dsDNA. After dissociation of
the oligonucleotides lying upstream from the cleavage site, the
PCR fragments are flanked by long 30 overhangs, allowing direc-
tional assembly of the vector and USER-treated PCR fragment(s)
into a single recombinant molecule. Despite the various modifica-
tions to the original method, uracil excision-based cloning has
remained largely unused, most probably because of its incompat-
ibility with proofreading DNA polymerases that stall at deoxyur-
idines present in DNA templates. However, this drawback has
been resolved by the PfuCx DNA polymerase (46). Recently, a
yeast expression vector has been redesigned to enable high-
throughput USER cloning of plant P450 cytochromes (49).

Yeast-based recombineering, relying on in vivo homologous
recombination, has been used to clone (multiple) DNA fragments
into plant binary T-DNA vectors by one-step transformation (50).
Other methods rely on in vitro site-specific recombination: the
Univector plasmid-fusion (51), In-FusionTM cloning (52), and
the GatewayTM recombinational cloning systems. The Gateway
system is commercialized by the Invitrogen Corporation (www.in-
vitrogen.com) and is arguably the most popular nowadays. It is
based on the enzymes that catalyze the insertion and excision of
the � phage genome into and from the Escherichia coli chromo-
some and on the DNA attachment sites involved in these reactions.
The original sites have been modified for in vitro site-specific
recombination to capture DNA segments into so-called entry
clones and, from these, into various destination vectors (53)
(Fig. 8.1). The BP reaction is catalyzed by the BP Clonase enzyme
mix that transfers a DNA fragment of interest - for example, a PCR
product - flanked by two att B sites into a donor vector carrying
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Fig. 8.1. Schematic representation of att sites and Gateway recombination reactions. (A) In a BP clonase reaction, att B
sites (in a PCR product or plasmid) recombine with the matching att P sites of a donor vector (pDONR) to yield att L sites in
a novel entry vector (pENTR) and att R sites in a byproduct. (B) In an LR clonase reaction, att L sites in an entry vector
(pENTR) recombine with the matching att R sites of a destination vector (pDEST) to yield att B sites in a novel expression
vector (pEXPR) and att P sites in a byproduct. (C) In a single MultiSite LR clonase reaction, the compatible att sites carried
by entry clones originating from independent BP clonase reactions and by a MultiSite destination vector recombine to yield
a single contig in which the DNA fragments of interest are separated by short att B sites. Inside-out gradient box, DNA
fragment of interest assembled in BP and LR clonase reactions; black box with vertical white stripe, att B sites, also at the
core of the att P, att L, and att R sites; diagonally lined box, portion of the att P and att L sites; lattice box, portion of the att P
and att R sites. B1 to B4, att B1 to att B4 sites; L1 to L4, att L1 to att L4; R1 to R4, att R1 to att R4. Ref. 61; reproduced with
permission from the American Society of Plant Biologists #.
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two matching att P sites, resulting in an entry clone in which the
fragment is flanked by two att L sites. This fragment can then be
transferred into different destination vectors carrying two att R
sites through the LR reaction catalyzed by the LR Clonase enzyme
mix. Following recombination of the matching att L and att R
sites, the DNA fragment of interest is inserted and again flanked
by att B sites, resulting in a novel expression clone. To enable
directional cloning, variants of the original att B, att P, att L, and
att R sites have been engineered so that att B1 will react specifically
with att P1, but not with att P2, att P3, etc. (53–55). Moreover,
the att B site sequences always maintain the frame register, which is
necessary for translational fusions with the N- or C-terminus of the
protein encoded in the cloned ORF.

4. Gateway Vectors
for Plant Cell
Transformation

Binary T-DNA vectors used for Agrobacterium tumefaciens-
mediated transformation of plant cells are large plasmids that can
be cumbersome to manipulate in classical restriction/ligation
schemes. Therefore, several research teams have recently devel-
oped Gateway versions of such vectors to streamline ectopic gene
expression, gene silencing, and promoter studies in transgenic
plants (56–58). These original vector sets have later been comple-
mented with constructs that express protein fusions carrying fluor-
escent, purification, or epitope tags (59–61) (Table 8.1).

Typically, the constructs are created by in vitro recombination,
transformed in E. coli strains, and segregated from other reaction
byproducts and input vectors through appropriate antibiotic selec-
tion and ccdB counterselection (53). Since small high-copy E. coli
plasmids are routinely introduced into plant cells or protoplasts via
methods that do not require Agrobacterium-mediated delivery,
such as particle bombardment, polyethylene glycol/Ca2þ transfec-
tion, or electroporation, these plasmids have also been adapted for
plant transgene construction via Gateway recombinational cloning
(61) (Table 8.1).

5. A Unified
Framework for the
Modular Assembly
of Plant
Transgenes

An important asset of the Gateway system is the versatility of its
entry clones. Once such an entry clone, for example an ORF clone,
has been constructed and the sequence of its insert has been
validated, the same plasmid can be recombined reliably with
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many different destination vectors, each intended for a distinct
functional assay. For an ORF, these assays could be Y2H protein
interaction mapping, protein production in vitro, in bacteria,
fungi, and insect cells, phenotypic complementation in yeast or
plants, and subcellular localization of proteins fused with a fluor-
escent tag.

Furthermore, the availability of Gateway recombination site
variants has led to a notable technological improvement, dubbed
the MultiSite Gateway system that enables the simultaneous
assembly of multiple DNA fragments in one single LR clonase
reaction through three or more distinct and incompatible att site
series (54, 55) (Fig. 8.2). MultiSite cloning schemes are attractive
for gene function studies requiring the repeated modular arrange-
ment of multiple elements, such as promoters, coding sequences,
and terminators. MultiSite plant binary T-DNA destination vec-
tors have been designed to take advantage of this technological
improvement (62, 63). Building blocks that fit into these recipient
vectors have been formatted as entry clones that carry sequences
commonly used in plant molecular biology, including regulatory
sequences (promoters and terminators), enzymatic reporters, and
tags coding for epitopes, fluorescent proteins, and affinity purifica-
tion peptides (61, 64).

In the primary implementation of the MultiSite cloning sys-
tem, the basic collection of modular entry clone cassettes can be
assembled in two-fragment or three-fragment LR reactions in the
order att4-att1/att1-att2 or att4-att1/att1-att2/att2-att3,
from the 50 to 30 orientation relative to transcription (Fig. 8.3A
and B). In this framework, the promoters or enhancer motifs are
flanked by the att L4 and att R1 recombination sites, ORFs by the
att L1 and att L2 sites, and terminators by the att R2 and att L3
sites. These entry clones are recombined into plant binary T-DNA
destination vectors, carrying recipient ccdB cassettes flanked by the
att R4-att R2 or att R4-att R3 sites (62).

However, the MultiSite Gateway technology can also be used in
configurations in which att sites are positioned so that several DNA
fragments are recombined into separate cassettes. In this instance,
genes captured in distinct entry clones, for example att L1-gene1-
att L2, att L4-gene2-att L3, and att L6-gene3-att L5, can be
placed in a single LR reaction in the same T-DNA binary vector
but each under the control of different promoters and terminators
(61) (Fig. 8.2C). This flexible scaffold facilitates the stacking and
simultaneous testing of multiple transgenes in transformed plants to
explore multigene traits in model plant species or crops.

Finally, it is worth emphasizing that the expression units
resulting from LR reactions are no dead ends. Indeed, cassettes
built in expression clones and flanked by specific att B sites can
serve as a template for the reverse BP recombination with the
corresponding donor vectors, resulting in the replacement of a
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Fig. 8.2. MultiSite Gateway recombinational cloning strategy. In all three schemes, each of the entry clones is produced
in vitro in a BP clonase reaction that transfers a PCR amplicon or plasmid segment flanked by the appropriate att B sites
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DNA fragment formatted in the Gateway format by its corre-
sponding ccdB cassette (61) (Fig. 8.3C). Modular destination
vectors generated by reverse BP cloning are particularly advanta-
geous when series of constructs need to be created in which only
one of the elements varies. Once the variable segment is replaced
by a ccdB cassette flanked by att L and/or att R sites, the resulting
destination vector can be used to generate additional expression
clones, bypassing the need to perform MultiSite Gateway LR
clonase reactions involving three or more plasmids and requiring
complex assembly validation. Of course, similar vectors can be
built via classical restriction/ligation strategies, but such cloning
may be cumbersome with large plasmids and does not allow the
downstream modular manipulation of elements in the resulting
expression clones by alternating reverse BP and LR reactions.

6. Cloned Sequence
Repertoires in
Plants

6.1. Protein-Coding

Sequences

The most practical manner to handle a protein for a variety of
research purposes is to create a recombinant DNA plasmid con-
taining the corresponding complementary DNA (cDNA) or ORF.
With this basic intermediate material, the protein can be synthe-
sized in vitro or in any species and cell type, provided the appro-
priate expression cassettes and transformation procedures are
available. If the ORF is trimmed, without 50 or 30 untranslated
regions, the encoded protein can be produced as a translational
fusion with any chosen peptide moiety, such as purification or
marker tags, by positioning the ORF in an expression unit in
frame with the tag sequence. Because genome annotation and
downstream functional studies require the characterization of
protein-coding sequences, large-scale initiatives focusing on
model plant species isolated and sequenced full-length cDNA
and ORF clones (65–69). As listed in Table 8.2, most of the
available Arabidopsis clone repertoires have been captured in Gate-
way att L1-gene-att L2 entry clones. In the case of ORFeomes,
the original stop codon may be either maintained (closed

Fig. 8.2. (continued) into one of three donor vectors. Subsequently, two (A) or three (B) fragments are assembled
contiguously in vitro in a single MultiSite LR clonase reaction, by transfer from the two or three entry plasmids into a
destination vector to form an expression clone, respectively. (C) Alternatively, three genes of interest can be transferred
simultaneously in three independent transcription units. In all cases, the products of the BP or LR reactions are
introduced into E. coli cells and the entry or expression vectors are selected in bacteria grown on kanamycin (Km) or
spectinomycin (Sp) medium, respectively. Symbols as indicated in panel A. Adapted from refs. 61 and 62, with
permission from Elsevier # and from the American Society of Plant Biologists #.
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configuration), resulting in the production of the native protein,
or removed, enabling the addition of C-terminal peptides (open
configuration). Some cloning protocols have been adapted so that
open and closed ORFs are isolated simultaneously (70).

6.2. Non-coding

Sequences

Cis-acting regulatory sequences may be isolated from the genome
either as entire intergenic or promoter regions or as discrete bind-
ing sites recognized by chromatin-associated factors. A library of
approximately 20,000 Arabidopsis promoter amplicons has been
created (www.psb.ugent.be/SAP/) that can be captured readily as
att L4-promoter-att R1 entry clones compatible with MultiSite
Gateway LR reactions (71). Accessions from this versatile resource
have already been used for the detailed mapping of transcript
patterns in planta (unpublished results). This Arabidopsis promo-
terome may also be exploited for the study of transcriptional net-
works via one-hybrid screens either in yeast (72) or in plant cells
(73, 74), in combination with TF libraries (75, 76).

6.3. Tags for RNAi Recently two main methods have emerged as most practical for
post-transcriptional gene silencing in higher plants. First, hairpin
RNAs (hpRNAs) that harbor a ds stem of a few hundred base pairs
and a loop with an intronic sequence have been shown to effi-
ciently knock down expression (77). Gateway recombinational
schemes have helped streamline the production of the correspond-
ing silencing constructs. In particular, a recombinant DNA plas-
mid that carries the inverted repeat coding for the two
complementary strands of the hpRNA can be created in vitro in a
single LR clonase reaction, provided the gene region targeted for
RNAi is available as a Gateway entry clone (58, 78, 79). Second,
amiRNAs also induce potent RNAi in various plant species (17,
80, 81). This approach entails the expression of an endogenous
plant microRNA precursor engineered to yield a 21-nucleotide ds
amiRNA selected to target the degradation of one or several
transcripts of interest according to experimentally defined target
selection parameters (wmd2.weigelworld.org).

Because amiRNA target recognition relies on a short 21-
nucleotide sequence, amiRNAs yield more specific silencing than
the numerous siRNAs derived from the long (hundreds of base
pairs) ds hpRNA molecules. The knockdown of off-target genes
that share (even small) stretches of sequence homology with the
silencing RNA sequences complicates the analysis of the resulting
phenotypes and the identification of the causal gene(s). Unfortu-
nately, specific amiRNAs or hpRNAs do not always result in sig-
nificant downregulation and current algorithms lack predictive
power of silencing success. Large-scale Gateway clone collections
are available for knocking down Arabidopsis genes with either of
the two methods (Table 8.2). Although the silencing tags are
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primarily transcribed from transgenes constructed for constitutive
silencing, they can also serve for virus-mediated, inducible or
tissue-specific RNAi (82, 83).

7. Functional
Screens

7.1. Genetic

Perturbations

In vivo homologous recombination is still not routinely achievable
in higher plants. Mutant alleles are mainly generated either via
mutagenesis with chemical or physical agents that alter the DNA
integrity or after the insertion of engineered T-DNAs or transpo-
sable elements at random positions into the chromosomes. These
untargeted approaches have been extremely valuable to study
genome elements without any prior knowledge. Insertional lines
will remain key assets for plant geneticists because they provide
stably tagged mutations in genes of interest. However, the limita-
tions are that thousands of mutant lines must be generated to
reach a satisfactory genome coverage, the location of the mutated
sites must be determined, and phenotypes need to be genetically
linked to each mutation. Reverse genetics screens based on avail-
able sequence repertoires offer complementary advantages. Gain-
of-function and loss-of-function phenotypes can be produced by
overexpression and RNAi, respectively, and only a few transgenic
individuals need to be produced for phenotypes to be attributed to
the construct encoding a particular genetic perturbation.

The full-length cDNA over–expressing (FOX) gene–hunting
system is one implementation of this strategy. It consists in the bulk
transformation into Arabidopsis of thousands of randomly selected
and normalized RIKEN Arabidopsis full-length (RAFL) cDNA
sequences driven by the cauliflower mosaic virus 35S promoter
(84). The initial large-scale phenotypic analysis of first-generation
(T1) transformed lines indicated that a high fraction showed altered
morphology (9 %) and that the mutant phenotypes were in most cases
transmitted as a dominant or semi-dominant trait through the next
generations. In another attempt to develop a batch procedure for
reverse genetics in planta, a library of 32 ethylene response transcrip-
tion factor (ERF) ORFs was transferred as a pool in an overexpression
vector, then in Agrobacterium and Arabidopsis plants via the floral dip
procedure. The original complexity of the ERF collection was main-
tained throughout the successive steps and the resulting transgenic
plants were screened for enhanced abiotic stress tolerance pheno-
types, leading to the identification of several leads (85)
(www.ubpb.gwdg.de/wdllab/index.html). When compared to
transforming one construct at a time, the batch approach reduces
costs, labor, and greenhouse space for the build-up of a library of
overexpressing plants. Note that the constitutive expression of a
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target gene might sometime leads to its co-suppression and mutant
phenotypes can be wrongly attributed to enhanced rather than
decreased activity.

As the major bottleneck in reverse genetics screens is the
phenotypical analysis of large mutant plant populations, it might
be advantageous to investigate particular segments of signaling or
biochemical pathways in cultured cell lines, even though such
simplified systems are not appropriate to address the complexity
of entire processes that take place in whole organisms. Typically,
cell-based screens yield numerous candidates suspected to act in
the biological process under scrutiny and have to be followed by
in-depth studies to determine the precise role of the identified hits.
A high-throughput procedure for the introduction of RAFL
cDNA fragments into binary vectors was developed for the pro-
duction of gain-of-function Arabidopsis T87 suspension cell lines
(86). Since RAFL cDNA fragments are cloned into a cDNA vector
carrying rare oriented restriction sites (65, 87), a new entry vector,
pRAFLENTR, was designed enabling transfer into the same
restriction sites and between the Gateway att L1 and att L2
sequences. Once pRAFLENTR derivatives were generated by
restriction/ligation cloning, the RAFL cDNA sequence could
easily be transferred through Gateway cloning into various desti-
nation vectors (86). Note that the same strategy was applied to
transfer 12,000 Arabidopsis ORF sequences originally captured as
pUNI vectors (67) into Gateway entry clones and then into Y2H
vectors for production of proteins as translational fusions either
with the GAL4 transcriptional activation domain or with the
DNA-binding domain (P. Braun, D. Hill, M. Vidal, and J.
Ecker, personal communication).

When a genetic screen is chosen, it is important to keep in
mind that the characterization of stable mutants, such as T-DNA
insertional lines, only provides information on the final state
resulting from the mutations affecting all cells at all times in the
mutated individuals. By contrast, transgenes derived from master
clones can be designed to drive the production of proteins or
silencing RNAs in specific cell types or in response to exogenous
inducers, so that the direct consequences of the triggered genetic
perturbations can be studied in the course of development or in
small time windows.

7.2. Protein

Localization

A key characteristic of a protein function is its subcellular locali-
zation. To investigate this property in a systematic fashion, hun-
dreds of GFP–ORF fusions were expressed in Arabidopsis cell
cultures after transient transformation with a hypervirulent Agro-
bacterium strain (88). To facilitate localization studies, a series of
fluorescent Arabidopsis organelle markers have been developed,
highlighting the endoplasmic reticulum, the Golgi apparatus,
the tonoplast, peroxisomes, mitochondria, plastids, and the
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plasma membrane (89). All markers were generated with four
different fluorescent proteins to allow flexible combinations in
co-localization experiments.

7.3. Protein–Protein

Interactions

Plant PPIs have been studied with various techniques, each with
specific advantages and limitations (90, 91). Of all, the Y2H
system is by far the easiest to scale up. Although Y2H has not
been utilized yet to analyze plant interactomes at the global scale,
small interaction maps focusing on a limited set of potential inter-
actors have already been assembled to tackle specific biological
questions. For example, a comprehensive study investigated the
interactions involving over 100 Arabidopsis MADS box TFs based
on a matrix-mating approach. These TFs form dimers with differ-
ent regulatory properties and the systematic pairwise PPI screen
was helpful to identify factors involved in the same developmental
programs because of their similar interaction profiles (92).

But membrane protein associations are not accurately
reported in classical Y2H screens in which the reconstituted TF
must reach the nucleus. The split-ubiquitin system was specifically
developed to circumvent this pitfall (93). In this alternative yeast
heterologous configuration, PPI occurs at the cytosolic side of
yeast membranes. Upon protein interaction, two ubiquitin frag-
ments are brought together, forming a functional ubiquitin mole-
cule and triggering the action of endogenous ubiquitin-specific
proteases. Cleavage of the reconstituted ubiquitin from the fused
membrane proteins releases a TF that activates transcription of
marker genes. This system was improved for high-throughput
application by using a mating approach to bring bait and prey
together in one yeast cell. It has been applied to characterize
Arabidopsis potassium channels (93) and is now implemented for
the systematic study of associations between Arabidopsis mem-
brane proteins (www.associomics.org).

Recently, a promising split-protein technology has been
developed to identify PPIs directly in plant cells: the firefly
luciferase (LUC) complementation imaging (LCI) assay (94).
The assembly of the non-functional LUC N- and C-terminal
fragments is detected by a luminometer or by a low-light ima-
ging device after addition of the substrate luciferin. LCI is
particularly attractive for plant studies because the luminescence
is measured in the dark and is not affected by autofluorescence.
LCI constructs were tested in protoplasts and intact leaves with
protein pairs known to interact with different affinities in plant
cells (94).

Several methods exist to localize microscopically PPIs in
living cells, although their use in high-throughput mode still
needs to be demonstrated. With Förster or fluorescence reso-
nance energy transfer (FRET), two candidate proteins are
labeled with compatible donor and acceptor chromophores
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(fluorophores) (95). When the fused donor and acceptor fluor-
ophores are brought together via the association of their carrier
proteins, intermolecular FRET results predominantly in emis-
sion from the acceptor chromophore. The FRET pair most
commonly used in biological assays consists of the cyan fluores-
cent protein (CFP) and yellow fluorescent protein (YFP).
A limitation of FRET is the need to excite the donor fluorophore
by light, which can lead to photobleaching, autofluorescence,
and direct excitation of the acceptor fluorophore. Furthermore,
some tissues can be damaged by the excitation light or might be
directly photoresponsive, as is the case for many plant tissues.
The bioluminescence resonance energy transfer (BRET) techni-
que avoids these drawbacks. It is based on a bioluminescent LUC
that produces blue light in the presence of a substrate, excitating
the YFP when the two hybrid proteins interact and resulting in
an easily detected yellow shift in the luminescence spectrum
(96). A series of recombinational cloning vectors were generated
to accelerate the production of proteins tagged with LUC or
YFP in plants (97).

Bimolecular fluorescence complementation (BiFC) is another
powerful technique to determine the subcellular localization of
interacting partners in vivo and in real time (98–100). In this
configuration, a signal is detectable only when the two fragments
of a split fluorescent protein are brought together by association of
the fused partners. Complementary sets of expression vectors were
designed for BiFC analyses in transiently or stably transformed
plant cells (101). Similarly, Agrobacterium multigene expression
binary vectors have been constructed carrying the BiFC expression
cassettes for co-production of the two protein fusions with either
the N- or C-terminal fragment of YFP, together with an additional
fluorescent protein that serves as an internal transformation con-
trol or as a marker for specific subcellular compartments (102).
The BiFC technique is not restricted to the use of YFP fragments
(103). For example, multicolor BiFC enables the simultaneous
visualization of multiple protein interactions in the same cell and
the comparison of the efficiencies of complex formation with
alternative interaction partners (99, 104).

Finally, TAP and MS protocols, originally developed for the
characterization of yeast protein complexes, have been adapted
to Arabidopsis cell suspension cultures (64). This platform
necessitated the construction of Gateway vectors for the expres-
sion of TAP-tagged proteins, a streamlined procedure for the
fast generation (8 weeks) of transgenic suspension cultures, and
TAP modified for plant cells. Although the throughput for the
study of Arabidopsis complexes cannot rival yeast-based proce-
dures, already more than 150 baits have been processed so far
with multiple biological replicates (G. De Jaeger, personal
communication).
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7.4. Protein Arrays Novel techniques based on ORFeome resources have been suc-
cessfully applied to enhance the scale at which biochemical assays
can be conducted. Enzymatic reactions have been miniaturized
and carried out on microarrays printed either with proteins pur-
ified from microorganisms and in vitro expression cocktails
(105), or synthesized directly on the chip (106). Protein micro-
arrays can also be used to detect interactions between proteins,
with nucleic acids, lipids, and other compounds (107). They have
already been applied to identify potential targets of protein
kinases among Arabidopsis proteins purified from E. coli (108,
109), to characterize specificity and cross-reactivity of monoclo-
nal antibodies or polyclonal sera (110), and to investigate the
calmodulin/calmodulin-like interactome with an Arabidopsis
protein microarray containing 1,133 proteins (111).

8. Conclusion

The creation and quality control of genome-scale sequence
repertoires is an expensive and laborious task. Nevertheless, a
lot can be gained in building reference clone collections based
on versatile configurations suitable for as many downstream
applications as possible. Such resources can be exploited by
scientists interested in the functional characterization of only a
few genes. They are also the necessary starting point for systema-
tic approaches focusing on the analysis of large gene or protein
sets. Although sometimes lagging in comparison to achievements
in other eukaryotic model species, large-scale clone-based plant
functional genomics projects are now under way, including bin-
ary PPIs mapping, protein complex association mapping, and
screens based on protein arrays. Information resulting from
these projects, together with data sets originating from structural
genomics (genome sequence, epigenome modifications) and
profiling (mRNA, siRNA, miRNA, proteins, metabolites) sur-
veys, will provide the necessary foundation for quantitative mod-
eling and systems biology.
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Chapter 9

Challenges and Approaches to Statistical Design
and Inference in High-Dimensional Investigations

Gary L. Gadbury, Karen A. Garrett, and David B. Allison

Abstract

Advances in modern technologies have facilitated high-dimensional experiments (HDEs) that generate
tremendous amounts of genomic, proteomic, and other ‘‘omic’’ data. HDEs involving whole-genome
sequences and polymorphisms, expression levels of genes, protein abundance measurements, and combi-
nations thereof have become a vanguard for new analytic approaches to the analysis of HDE data. Such
situations demand creative approaches to the processes of statistical inference, estimation, prediction,
classification, and study design. The novel and challenging biological questions asked from HDE data have
resulted in many specialized analytic techniques being developed. This chapter discusses some of the
unique statistical challenges facing investigators studying high-dimensional biology and describes some
approaches being developed by statistical scientists. We have included some focus on the increasing interest
in questions involving testing multiple propositions simultaneously, appropriate inferential indicators for
the types of questions biologists are interested in, and the need for replication of results across independent
studies, investigators, and settings. A key consideration inherent throughout is the challenge in providing
methods that a statistician judges to be sound and a biologist finds informative.

Key words: FDR, genomics, high-dimensional, microarray, multiple testing, statistics.

1. Introduction

The present genomic era (1) has ushered in new challenges in
high-dimensional study design and analysis. Draft sequences of
several genomes coupled with new technologies allow study of
entire genomes rather than isolated single genes. Questions from
such high-dimensional investigations involve multiplicity at
unprecedented scales. These questions may involve thousands of
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genetic polymorphisms, gene expression levels, protein measure-
ments, genetic sequences, or any combination of these and their
interactions.

This chapter is targeted to statisticians, biologists, and those
whose expertise bridges the interface. Questions that biologists
want to ask from high-dimensional experiment (HDE) data
require novel analytic approaches. It is important that the statis-
tical methods applied to HDE data are aimed at drawing inferences
biologists are interested in and also that these analytic methods
have sound statistical foundations. There is now a relatively large
and quickly growing body of statistical literature on the design of
HDEs and on the analysis of resulting data from HDEs. Here we
summarize some key methodological developments from statisti-
cians as they pertain to HDEs. Included is some review of statistical
foundations related to the interpretation of statistical evidence
(e.g., a P-value), sampling variability, and aspects of a study design.

In the next section, we discuss design, analysis, and inference
in the context of a single gene (i.e., a single hypothesis test). An
example of a microarray experiment is used to illustrate the ideas.
In Section 3 we extend the discussion to high-dimensional studies
where many hypotheses are simultaneously investigated. Section 4
focuses more on the false discovery rate (FDR) (2) and related
quantities that have garnered increased interest when analyzing
high-dimensional data. Section 5 discusses some other topics
related to HDEs.

2. Statistical
Inference for
a Single Gene

A variable, Y, will be used to denote the information of interest in
an HDE. In a microarray experiment, Y will be a measure of
genetic expression after perhaps background correction, normal-
ization, or transformation. These latter pre-processing choices are
generally determined by the technology used in the experiment,
potential biases induced in the measurement due to factors
involved in the experiment, and characteristics regarding the sta-
tistical distribution of Y. In the discussion that follows, Y will be
the genetic expression after pre-processing and, in this section, we
will consider the analysis for differential expression for a single
gene. Later, the issues encountered in high-dimensional settings
will be discussed. For some references on pre-processing of gene
expression data, see (3–6).

2.1. Discussion

of Designs

Consider an experiment where there is one treatment factor with
T levels. The goal is to determine if a gene is differentially
expressed across the levels of the treatment. In many earlier studies
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T¼2 and the two levels were a test treatment versus a control
treatment. Travers et al. (7), for example, compared gene expres-
sion in plants experiencing ambient precipitation patterns and
plants that experienced precipitation altered following a pattern
predicted by models of climate change in the United States Great
Plains. More generally, T can be greater than 2, such as a set of
T different precipitation patterns, a set of T plant genotypes, an
infection by T plant pathogens or combinations of plant patho-
gens, or planting in a set of T different soil types.

In a completely randomized design comparing T levels of a
treatment, a total of N samples are randomly divided into groups
of size n1;n 2; . . . ;n T with each group receiving one of the levels of
the treatment. In such a design the number of possible treatment
assignments is

C ¼ N !

n1!n2! . . . nT !
; ½1�

where N ¼
P

i ni. Observed data are represented by Yij , i.e., the
expression of a gene for the j th sample in the ith treatment
group where i ¼ 1; . . . ;T ; j ¼ 1; . . . ;ni, and ni is the number
of samples assigned to the ith treatment group. The one-way
analysis of variance (ANOVA) model that is often used to model
the data is of the form, Yij ¼ �i þ eij , where �i is the population

mean response of genetic expression for samples exposed to the
ith treatment level and eij is a random error term. In a hypothesis

test to determine if there is any mean differential expression due
to the treatment, the ANOVA model above is compared to a
reduced null model Yij ¼ �þ eij . The null hypothesis that all

means are equal, Ho : �1 ¼ �2 ¼ � � � ¼ �T , is tested against an
alternative that there is at least one difference between means,
stated as Ho : �i 6¼ �i0 for some i 6¼ i 0. Tests of linear combina-
tions of means may also be of interest. These are of the form,

Ho :
PT

i¼1 ci�i ¼ 0 versus an alternative Ha :
PT

i¼1 ci�i 6¼ 0
where c1; . . . ; cT are constants chosen by the investigator, e.g.,
c1 ¼ 1; c2 ¼ �1 and all other constants equal to 0 would be a test
of �1 � �2.

More complex designs may be needed in contexts such as
ecological studies, where the design may be influenced by condi-
tions in the field where samples are obtained. In the Travers et al.
(7) example, the emphasis of the analysis was on comparing gene
expression for plants in replicate plots experiencing ambient pre-
cipitation patterns and plants in replicate plots experiencing pre-
cipitation patterns altered to follow a climate change prediction.
But this study was performed in a pre-existing field experiment
that had its own experimental structure. The precipitation treat-
ments were applied in the field in a randomized complete block
design, where plants within a block were likely to be somewhat
more similar genetically and to have somewhat more similar
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interactions with other organisms. Time of day is also very impor-
tant in determining levels of expression for some genes. Since
collecting plant samples and preserving them for later processing
is time-consuming, this model also included time of day as a
predictor in a strip-plot design. This field study also included
other treatment structures, such as a temperature treatment with
two levels, ambient and increased, applied to subplots. Milliken
et al. (8) address the issues involved in choosing among designs for
pairing samples (in 2-dye experiments) collected from pre-existing
split-plot experiments such as this one, where it may not be feasible
to include comparisons of all treatment combinations and all dye
combinations on the same microarrays. More discussion of micro-
array designs is given in (9).

Missing data can arise in microarray experiments and some
designs are more robust to missing data than others. Field samples
may be prone to missing data because of potentially more
degraded tissue. Cross-species hybridization may also result in
more missing data because of lower homology between species
for genes that are less highly conserved. Consideration of potential
sources of missing data in an HDE may aid in the choice of a design
that minimizes some of the negative consequences of missing data
while maintaining adequate statistical efficiency to detect effects
that are of interest.

2.2. Statistical Tests A statistical test involves a metric, say �, that can be computed from
observed data. This metric quantifies a departure from the null
hypothesis and compares the size of this metric to what could have
been observed by chance if the null hypothesis, Ho, were true. This
assessment of chance is quantified by the P-value that is computed
as a probability of observing a value of the metric as extreme (i.e.,
favoring the alternative Ha) or more extreme if Ho were true.
Small P-values represent evidence in favor of Ha. P-values can be
computed in two ways: under a random sampling framework or a
random treatment assignment framework.

A random treatment assignment compares the observed metric
with what would have been observed under different treatment
assignments if Ho were true. Consider a two-sample completely
randomized design (T¼2) that is testing Ho : �1 � �2 ¼ 0 versus
a two-tailed alternative. One metric would be the usual estimate of

�1 � �2, � ¼ �y1:� �y2; where �yi: ¼ 1
ni

Pni

j¼1

yij ; i ¼ 1; 2. The statistical

test is the usual Fisher randomization test (10). Under Ho, values of
Yij are permuted across the assigned treatments resulting in C
(equation [1], for T¼2) values of �y1:� �y2. The proportion of
these �y1:� �y2 that are further away from zero than the observed
value of �y1:� �y2 is the randomization-based P-value. More details of
this test, and the required assumptions, are in Mehta et al. (11).
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The metric � need not be a mean difference. It could be a
standardized mean difference, i.e., the usual t-statistic or a mod-
ified t-statistic as described in (12). Pepe et al. (13) proposed a
metric derived from receiver operating characteristic (ROC)
curves. The Wilcoxon rank-sum test is a randomization test
based on the ranks of gene expression. A limitation of randomiza-
tion-based P-values is their discreteness in small samples (14, 15).
For example, if N¼6 and n1 ¼ n2 ¼ 3, there are only 10 possible
two-tailed P-values resulting from the randomization test. This
discreteness limits follow-up work that may involve ranking the
most promising results in genetic expression studies and/or esti-
mation of FDR.

Randomization tests can be extended for T treatment groups
in a completely randomized design. The metric must quantify
how different the group means are from an overall grand mean.

One possibility is � ¼
PT

i¼1

ni �yi:� �y::ð Þ2 where �y:: is the mean of all

N observations. The value of � computed from observed data is
then compared with the C possible values obtained by permuting
the observed data across treatment groups. Other metrics are
possible and the computation for a randomization test becomes
more complex. Mielke and Berry (16) have details regarding
permutation-type tests for more involved designs. When sample
sizes are small, the discreteness issue that was present for two
treatment groups is still present. When samples are larger, the
number of possible randomizations becomes extremely large and
computation of a P-value may require Monte Carlo approxima-
tion. Parametric tests can also be used to approximate a rando-
mization-based P-value. The common parametric tests are the
two-sample t-test for two treatment groups or the ANOVA-
based F-test for multiple treatment groups, or two-way and
higher order ANOVA designs when multiple treatments or
blocking variables are used.

In a random sampling framework for comparing T levels of a
treatment, the data for the expression of a particular gene are
assumed to be a random sample from a larger population. For
example, in an ecological study involving big bluestem plants,
some samples might be drawn from a population of diseased big
bluestem plants while other samples may be drawn from a popula-
tion of non-diseased big bluestem plants. While big bluestem
plants may be distributed through a large part of the United States,
it may only be realistic to sample from a single state or even from a
single prairie and assume that the sample is roughly representative
of a larger target population that is of interest in the study. The
resulting data are then assumed to be obtained from a statistical
population model, that is, for the ith treatment group,
Yi1;Yi2; . . . ;Yini

� FY y;�i; �ið Þ where FY is some population
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distribution that is used as a model for the response variable. If FY

is a normal distribution or if sample sizes are large enough, then
the appropriate statistical tests are the usual F-tests for ANOVA
models and, in the case of just two treatments, the usual two-
sample t-test.

For more complicated designs, mixed effects models for gene
expression data (17) can include random effects. Blocks may be
extremely important in biological studies, in the greenhouse,
growth chamber, or in the field, and are often reasonably included
as random effects. Many factors influencing gene expression are
not yet understood but may be dealt with to some extent by
blocking. Blocking may be done across space, across time, and
across individual scientists working with samples. Other treat-
ments of more direct interest may also be included as random
effects. For example, if expression in multiple genotypes is com-
pared and the genotypes are randomly selected, it would be rea-
sonable to treat genotype as a random effect.

Regardless of the design and model used to analyze resulting
data, ultimately some hypothesis will be of interest such as deter-
mining if a gene is differentially expressed across two or more
treatment conditions, or testing a contrast in a more complex
model. If required assumptions are met regarding the distribution
of data, the appropriate test results in a ‘‘valid’’ P-value.

2.3. Discussion of

P-values

Exploiting the properties of a P-value, as a random variable (18), has
recently become popular in methods that analyze high-dimensional
data (19–21), though the idea goes back further (22). A key feature
of a valid P-value is that its distribution, when the null hypothesis is
true, is uniform on the interval from 0 to 1. This leads to a con-
venient interpretation of a P-value as a measure of the making of a
type I error when rejecting a null hypothesis (i.e., rejecting a true
null hypothesis). What a P-value is and what it is not are best
illustrated with simple probability statements. Let Hof g be the

event that the null hypothesis is true and Ho
� �

the event that it is

false, and suppose that a null hypothesis will be rejected if a P-value
is less than some threshold, t. Denote a P-value, as a random
variable, as P. Then Pr P � tj Hof g½ � ¼ t, that is, the probability of
rejecting a true null hypothesis is equal to the threshold at which it
was rejected. This is a probability of committing a type I error.
Replacing the threshold with the actual observed P-value from a
test then allows the P-value to be interpreted as the chance of a type
I error.

A small P-value is often interpreted as evidence against the null
hypothesis and is, thus, often misinterpreted. Berger and Sellke
(23) discuss this and show some examples where a P-value is equal
to 0.05, but the probability that the null hypothesis is false, given
the data, is closer to 0.50. However, it is this latter probability that
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is more intuitive to investigators (11). Stated as a probability this is
Pr Hof gjP � t½ �, the probability the null hypothesis is true given
that a P-value falls below a given threshold. Interpretation in a
high-dimensional setting is as follows: if null hypotheses are to be
rejected when the corresponding P-values are less than or equal to
t, Pr Hof gjP � t½ � is an expected proportion of those ‘‘discoveries’’
that are false. An issue in computing this probability is that a prior
probability, Pr Hof g½ �, is needed. Computing this prior probability
from P-values obtained from multiple hypothesis tests has been
the focus of many methods that analyze high-dimensional data
(cf., 20, 24, 25).

3. Statistical
Inference in
High-Dimensional
Experiments

3.1. Multiple Test

Statistics and Multiple

P-Values

In a high-dimensional experiment there are, say K, observations
per sampled unit and data from a completely randomized design
comparing T levels of a treatment are of the form

Yij ¼ Y1ij ; . . . ;YKij

� �0
for the jth sample in the ith treatment

group. Randomization-based inference follows as discussed in
Section 2 except the entire vector of observations for the j th
unit is permuted across treatment conditions, i ¼ 1; . . . ;T . In
the random sampling framework the sample for the ith treatment
group is Yi1; . . . ;Yini � FY y;�i;�ið Þ, where �i is a K-dimensional
vector of the mean expression for each gene represented on the
arrays, and �i is a K � K variance–covariance matrix. The earlier
discussions for testing a single gene for differential expression
across the T treatment conditions would, with this multivariate
structure, now be a test on a marginal distribution for a single
gene; there are K marginal distributions, one for each gene. The
result from gene-specific tests is a distribution of K test statistics or
P-values. The most ‘‘interesting’’ genes are determined by a rank-
ing procedure or assignment of a posterior probability of being
differentially expressed, i.e., using the notation from Section 2

this would be Pr Ho
� �

jP � t
� �

as defined in (20).

Figure 9.1 illustrates two distributions of P-values obtained
from an experiment that evaluated the effect of two treatments,
drought stress and infection by a rust fungus, in a factorial design
(26). The drought treatment levels consisted of the presence or
absence of drought stress. The pathogen treatment levels con-
sisted of presence or absence of rust infection. The distribution
of P-values for a drought effect shows a stronger ‘‘signal’’ than that
for a rust effect because more P-values seem to be clustering
toward zero than would be expected under a global null hypoth-
esis, i.e., a ‘‘global null hypothesis’’ that there were no genes
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differentially expressed. If a global null hypothesis were true, one
would expect the histogram of P-values to be relatively flat on the
interval from 0 to 1. If genes were to be declared ‘‘statistically
significant’’ if a P-value is less than the threshold t ¼ 0:01, then an

estimate of the ‘‘true-positive’’ probability Pr Ho
� �

jP � t
� �

is

0.952 for a drought effect and 0.673 for a rust effect. These
probabilities were called true-positive probabilities in (20), and
the method reported there was used in the computations here.
Subtracting this probability from 1 is related to the false discovery
rate to be discussed in a later section. So of these genes that are
declared significant for a drought effect, most are expected to be
true discoveries, but only a little over two-thirds are expected to be
true discoveries when looking at a rust effect. Lowering the thresh-
old will increase this true-positive probability but at a cost of a
smaller set of genes with P-values below the threshold.

3.2. Sampling

Variability and

Replication

Sampling variability in HDEs can arise from multiple sources
(27, 28). A figure in Gadbury et al. (29, p. 81) and accompanying
discussion illustrated sources of variability affecting a distribution
of P-values. Technical variability of pixel effects on a spot was
discussed by Brody et al. (30), and other design issues affecting
technical variability have been considered by others, for example
(31). Whether to spot one gene multiple times on a single micro-
array or to have repeated microarrays for a single tissue sample are
aspects of assessing technical variability within and across arrays
(32). Ultimately, statistical inference generally is targeted to some
defined population of organisms and it is biological variability that
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Fig. 9.1. Distribution of P-values from tests for differential expression due to a drought
effect (left panel) and a rust effect (right panel).

188 Gadbury, Garrett, and Allison



is of primary interest and is, in fact, essential for drawing valid
inferences to a larger population of organisms (33). If the cost of
obtaining replicate biological samples is not large versus that of
obtaining a measurement (i.e., running a microarray), then there
are design advantages of obtaining biological replicates versus
expending resources on repeated measurements (9). Moreover,
increasing sample size (number of biological samples or replicates)
can increase the true-positive probability discussed above and
increase the chances of discovering true results in an HDE, i.e., a
higher expected discovery rate (34).

Hereafter, replication in an HDE will refer to biological repli-
cation, i.e., distinct tissue samples that are appropriately consid-
ered replicates in the context of the experiment being performed
(35). In some microarray experiments, a tissue sample will corre-
spond to a microarray or to a dye on a microarray in the case of dye
swap experiments. In randomization tests or resampling proce-
dures such as the bootstrap (36), the biological tissue or the

microarray represented by the data vector Yij ¼ Y1ij ; . . . ;YKij

� �0

is the unit of randomization or resampling. As mentioned earlier,
randomization tests can produce coarse distributions of test statis-
tics (and, hence, P-values), making it impossible to identify a list of
the most promising candidate genes. It is tempting, therefore, to
take advantage of the large number of genes and permute or
resample genes themselves. However, genes are not exchangeable
and variance of gene expression values is not homogeneous across
genes. Methods involving mixed effects models and/or empirical
Bayesian methods involving variance shrinkage have been pro-
posed to address inferential issues associated with unequal var-
iances across genes (17, 37, 38).

Gene-specific hypothesis tests are often carried out for each
gene and variance estimates are computed for each gene. Correla-
tion structure among measurements on a tissue sample (e.g., for
co-regulation of certain sets of genes in a microarray experiment)
leads to correlated P-values from multiple hypothesis tests, and
this correlation structure cannot be estimated from observed data
due to the high dimensionality. Yet this correlation can increase
sampling variability leading to increased variance of estimates
obtained from an HDE such as the true-positive probability
defined in Section 3.1.

3.3. An Illustration

of Correlated Tests

In an HDE, there are quantities of interest to the investigator that
summarize results over thousands of tests. One quantity is the
number of P-values below a threshold given that the global null
hypothesis is true. Another is the proportion of all hypotheses tests
for which the null hypothesis is true. Yet another is the true-
positive probability discussed above or the analogous quantity,
the false discovery rate. Many methods that estimate these
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quantities may perform well, on average, but some estimates that
are produced can have high variance when there is correlation of
gene expression values leading to correlated P-values (39–41).

Figure 9.2 shows the effect of correlation on the sampling
variability in a distribution of 10,000 P-values when the global
null hypothesis is true. The data that would have produced the
distributions of P-values would correspond to a situation where
there was no mean difference in expression across two treatment
groups for any genes. The test statistics that produced the
P-values were standard normal in all four plots. However, all test
statistics were independent in Fig. 9.2(A) but were correlated in
Fig. 9.2(B)–(D) by a correlation matrix, �. In Fig. 9.2(A), � was
the identity matrix meaning that all tests were independent and
that resulting P-values were uncorrelated. The histogram of
P-values is nearly uniform, as would be expected. Repeated sam-
pling from this model and computing a distribution of P-values
will result in plots resembling that in Fig. 9.2(A). In the other
parts of Fig. 9.2, � was block diagonal where 20 blocks of size
500 were used. Correlation between all pairs of genes within a block
was set to 0.5 and correlation of genes in different blocks was 0.
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Fig. 9.2. 10,000 P-values under the global null hypothesis. P-values are uncorrelated in (A) but correlated in (B)–(D) using
20 blocks of size 500 equicorrelation matrices where the common correlation is 0.5.
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Figure 9.2(B)–(D) shows three different distributions of
P-values computed from three simulations of data from this
model. Figure 9.2(D) looks similar to Fig. 9.2(A) where
genes are independent. However, Fig. 9.2(B) and (C) shows
how patterns in the distribution can arise due to sampling
variability, even though the global null hypothesis is true.

A simple statistic based on a distribution of P-values is the
number of P-values below a given threshold, say 0.01. Let
N(p¼0.01) represent this number. Since there are 10,000 P-values
and the global null hypothesis is true, we expect N (p¼0.01) to be,
on average, 100 regardless of the correlation structure. In the
individual samples in Fig. 9.2, it is equal to 90, 36, 145, and 86
in parts (A)–(D), respectively. N(p¼0.01) is expected to be 100 in
all of the plots but the standard deviation is 9.95 in part (A) and
67.48 in the other plots. A technique for deriving the standard
deviation for this statistic was outlined in (22) with further details
given in (42). The standard deviation of N(p¼0.01), as a statistic,
increases by a factor of 6 due to the correlation structure. What
correlation structure is reasonable in a genetic expression study may
depend on the organism and application. The one illustrated here
might be rather extreme. The standard deviation of N(p¼0.01) will
decrease as the block size for correlated data decreases and/or as the
value of the correlation decreases toward zero.

The performance of statistical methods for estimating quanti-
ties of interest in HDEs has typically been evaluating using simula-
tions that include simulating data with various correlation
structures (14, 20, 43). The key point here is that a weak signal
in a distribution of P-values may be due to some genes differen-
tially expressed or that the effect of correlation on sampling varia-
bility is producing the observed signal. It is unlikely that any
correlation could produce a strong signal like that in Fig. 9.1 for
a drought effect.

Recent papers have appeared that deal in more detail on cor-
relation structure among genes and the effect that it might have on
conclusions from a study (40, 44). A topic discussed later and one
of active research interest (33) is gene class testing where certain
classes of genes, rather than individual genes, are tested for differ-
ential expression. The methodological issues that arise with these
tests and their ability to overcome some of the issues associated
with testing single genes are beginning to be investigated (45).

3.4. Multiple Testing

in High-Dimensional

Experiments

One of the topics given the most attention has been the issue of
multiple testing in HDE settings. The multiple comparisons pro-
blem becomes especially acute when thousands of tests are being
conducted simultaneously and one wants to guard against type
I errors, i.e., rejecting a true null hypothesis. For example, as
discussed in the illustration above using Fig. 9.2 where there are
10,000 tests for which the null hypothesis is true, one would
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expect to find 100 ‘‘statistically significant’’ results at a threshold of
0.01 and 500 at the threshold of 0.05. These numbers are the
number of type I errors that would be committed if declaring a test
significant at the two respective thresholds. One obvious techni-
que to control the number of type I errors is to lower the threshold
at which significance is declared. Development of statistical meth-
ods to control for the number or proportion of type I errors in
multiple testing situations is its own area of research with entire
texts devoted to the topic, for example (46).

A common method that controls for the probability of a single
type I error is the Bonferroni adjustment. Suppose that only one
test were to be conducted and statistical significance is set to be at a
level 0.05, so that a P-value below this number is significant. When
there are K tests being conducted simultaneously, a single test is
declared significant, using a Bonferroni adjustment, at a P-value
below 0.05/K. The probability of one or more type I errors
among all K tests is then less than or equal to 0.05. In each
of the P-value distributions in Fig. 9.2 where the global null
hypothesis was true, K =10,000 and in all four cases there were
no P-values below 0.05/K, so no type I errors would be com-
mitted using a Bonferroni adjustment. Thus this adjustment did
what it was supposed to do.

Now consider the two distributions of P-values shown in
Fig. 9.1 where there appears to be a signal in each. There are
K ¼7550 P-values representing a drought effect and 7471 repre-
senting a rust effect. For the drought effect, there are only 14
P-values below 0.05/K and zero below this for the rust effect.
With a Bonferroni adjustment one would find 14 statistically sig-
nificant results for a drought effect and none for a rust effect. The
adjustment is extremely conservative and there are very likely many
true findings that are being missed, i.e., many type II errors. In
fact, the method in (20) estimates that around 46% of the null
hypotheses are false for a drought effect and around 16% for a rust
effect. Many of the modern methods for HDE data seek a balance
between controlling for a certain proportion of type I errors and
detecting truly significant results out of thousands of possible
tests. Many of these methods are focused on the false discovery
rate (FDR) first discussed by Benjamini and Hochberg (2).

4. The False
Discovery Rate and
Related Quantities
in High-
Dimensional
Experiments

As stated earlier, FDR is similar to one minus the true-positive
probability discussed earlier. Much work in statistical methods
development has focused on a mathematical definition of FDR
and methods to either bound it or estimate it. Many of these
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methods work on the distribution of P-values from multiple tests,
so herein we discuss FDR in this context. Stated in words, FDR is
an expected proportion of hypothesis tests that are declared statis-
tically significant, but that are false discoveries, i.e., the null
hypothesis is actually true. Table 9.1 shows quantities of interest
in an HDE where there are a total of K hypothesis tests.

4.1. Definitions

of the False Discovery

Rate

There are two approaches to using FDR in an HDE. One is to
specify a desired FDR (or an upper bound for it) and select a
threshold for statistical significance based on this desired upper
limit. Another is to specify a threshold (i.e., significance level for a
P-value) at which a hypothesis test will be declared significant, and
then estimate the FDR at that threshold. We discuss the latter and
show some ways that FDR can be estimated at a given threshold
for significance.

In Table 9.1, the row totals are known. Once a threshold, t, is
set by the investigator, R is the number of P-values below that
threshold. The number C is unknown and this is the number of
false discoveries out of the total R rejected null hypotheses. The
quantity C/R is the proportion of false discoveries. We can also
note other quantities such as B/(K–R) which is the proportion of
null hypotheses that are false but that were not detected in the test
(i.e., the P-value was above t).

The proportion C/R is an unknown quantity from an HDE.
FDR is defined with respect to this proportion as a parameter in an
HDE for which estimates can be derived. Benjamini and Hoch-
berg (2) defined FDR as follows:

FDR ¼ E C
.

R IfR>0gg

h i
¼ E C

.
R
�
�
�R > 0

h i
PðR > 0Þ; ½2�

where I R40f g is an indicator function equal to 1 if R >0 and zero
otherwise, and where EðÞ is an expectation operator representing a
population average. Storey (19) defined the positive FDR as

pFDR ¼ E C
.

R
�
�
�R > 0

h i
: ½3�

Table 9.1
Quantities of interest in an HDE. The total number of tests is
equal to K. The row totals are known but column totals are
not, nor are the individual values A, B, C, D

Ho true Ho false Total

Tests that are not declared significant A B K – R

Test that are declared significant C D R

Total M K – M K
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Since P R40ð Þ � 1� 1� tð ÞK , and since K is usually very large,
FDR 	 pFDR. For example, for K¼10,000, P R40ð Þ � 0:99995
when t ¼ 0:001 so we do not distinguish between FDR and pFDR
as the parameter being estimated and simply refer to it as FDR with

estimates denoted by dFDR. In fact there are other versions of FDR
that have been defined that differ in the way the expectation is taken
on the ratio C/R. Other examples are the marginal FDR, the empiri-
cal FDR, and the conditional FDR, but in many cases these different
versions of FDR are numerically close with some being equivalent
under certain conditions (47).

4.2. Estimating the

False Discovery Rate

and Related Quantities

The proportion M / K is the proportion of true null hypotheses
among all K tests, a quantity that is unknown in an HDE and must
be estimated. An estimate of this proportion (or an upper bound
for it) is needed in order to produce an estimate of FDR, and many
methods have produced estimates for this proportion (e.g., (20,
48, 49)). Let p0 ¼ M=K and an estimate of this as p̂0, and define
PR ¼ R=K , the proportion of rejected null hypotheses at a thresh-
old t, and note that PR is a known quantity in an HDE. There are
two (at least) basic techniques that are used to estimate FDR. One
set of techniques produce an estimate of p0 and then estimate FDR
at a selected threshold t using,

dFDR ¼ tp̂0

PR
½4�

These methods differ in how p̂0 is obtained with many meth-
ods focused on producing a conservative estimate. Clearly, p̂0 ¼ 1
would be the most conservative and, if the distribution of P-values
from multiple tests looks like that shown in Fig. 9.2(A), then
perhaps p0 is close to 1. However, if distributions look like those
in Fig. 9.1, then p0 should be less than 1. Many methods that
estimate p0 use algorithms that assess how much the distribution of
P-values deviates from a uniform distribution like in Fig. 9.2(A).

Another set of techniques uses a mixture model framework to
produce estimates of FDR. The mixture model (usually a two-
component mixture) approach on a distribution of P-values uses a
model of the form

F p; p0; �ð Þ ¼ p0F0ðpÞ þ 1� p0ð ÞF1ðpÞ; ½5�

where F is a cumulative distribution function (CDF), p a P-value,
F0 a distribution of a P-value under the null hypothesis, F1 a
distribution of a P-value under the alternative hypothesis, p0 is
interpreted as before, and � a (possibly vector) parameter of the
distribution. Since valid P-values are assumed, F0 is a uniform
distribution. Estimating the components of the model in [5] yields
estimates of FDR. The equation for FDR in a mixture model
framework is

194 Gadbury, Garrett, and Allison



FDR ¼ p0t
p0tþ 1� p0ð ÞF1ðtÞ

½6�

Equation [6] has been defined as the positive FDR (19) but, as
stated earlier, the different versions of FDR are close when K is
large. Methods based on the mixture model framework differ in
how the components of equation [6] are computed. Note that the
only difference between equations [4] and [6] is the denominator.
In [6], the denominator is the distribution function of a P-value
and some have used a parametric form. Allison et al. (20) used a
mixture of a uniform distribution and a beta distribution. The
denominator in equation [4] is a version of the empirical distribu-
tion function which is a step function with increments of 1/K at
each observed P-value. Another quantity called the local FDR
(LFDR, (50)) can be directly defined from the mixture model in
[5]. The definition is similar to [6] except that CDFs are replaced
by the corresponding probability density function (pdf):

LFDR ¼ p0

p0 þ 1� p0ð Þf1ðtÞ
: ½7�

The interpretation of LFDR is the posterior probability that a
test with a P-value equal to the threshold t is a test for which the
null hypothesis is true. As with FDR, LFDR will be smaller at
smaller values of t. Also, FDR can be thought of as a type of
averaging of LFDR over all tests with a P-value � t so, as a result,
values of LFDR will be greater than FDR at a given t. Estimates of
FDR and LFDR are obtained in statistical methods by estimating
the components in equations [6] and [7], respectively. Computing
an estimate at thresholds equal to each observed P-value gives an
FDR (LFDR) curve that is seen to be an increasing function of the
P-values. Figure 9.3 shows FDR and LFDR curves for the dis-
tribution of P-values shown for the drought effect in Fig. 9.1. The
estimates were obtained using the mixture model method of
Allison et al. (20). One can see that LFDR values are greater
than FDR values. From the plot one can see (roughly) that for
tests with a P-value smaller than 0.05, one would expect a propor-
tion of around 0.10 false discoveries. For a test with a P-value equal
to 0.05, one might estimate the posterior probability (LFDR) that
the null hypothesis is actually true to be around 0.20. User-
friendly software for fitting the mixture model of Allison et al.
(20) and computing quantities based on the model was reported in
Trivedi et al. (51) and is available at http://www.ssg.uab.edu/
hdbstat.

In Fig. 9.3 one can see that the FDR curve is a monotonically
increasing function of the P-values. That is, FDR is smaller at
smaller P-values. This does not necessarily happen when FDR is
computed using equation [4] because the denominator is not a
continuous function of the observed P-values. The FDR ‘‘curve’’
for the 100 smallest P-values obtained from the same data set is
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shown in the left panel of Fig. 9.4. There are some cases where a
smaller P-value yields an increased estimate of FDR. Storey (52)
defined the Q-value and interpreted it as a Bayesian posterior
P-value, that is, it is a measure of the strength of an observed
statistic (or P-value) with respect to the positive FDR. Estimates
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Fig. 9.3. FDR (solid line) and LFDR (dashed line) for the distribution of P-values in Fig. 9.1
for the drought effect. Estimated quantities for the plots were obtained using the method
in Allison et al. (20).
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Fig. 9.4. The FDR for the smallest 100 P-values (left panel) using equation [4] and the
Q-value (right panel) for the same P-values representing a drought effect (Fig. 9.1).
The values for the plots were obtained using the smoothing method in Storey and
Tibshirani (53).
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of the Q-value from observed data should be monotonically
increasing with the P-value. Storey (19) showed the algorithm to
compute a Q-value from observed data and a plot of this Q-value is
shown in the right panel of Fig. 9.4. A Q-value in Fig. 9.4
computed at a given P-value is never larger at a smaller P-value.
When there is no ‘‘signal’’ in a distribution of P-values (as seen in
those in Fig. 9.2), the Q-value may remain large for all P-values,
that is, for any list of tests that are rejected at a particular threshold,
the proportion of false discoveries may be high. The software for
computing Q-values is available as an R library called qvalue,
available at www.r-project.org.

4.3. Sample Size

Considerations

for the False Discovery

Rate and Related

Quantities

Sometimes computed values of FDR can be large at even very small
thresholds, and these large values may be due to the small sample
sizes that are often common in HDEs. Gadbury et al. (34) pre-
sented a method to evaluate the role of sample size in bringing
quantities like FDR to desired levels when the design is a compar-
ison of two treatments. They also defined the expected discovery
rate (EDR) which was the expected proportion of true alternative
hypotheses that will be discovered in an HDE, i.e., the expected
proportion D=ðK �M Þ. Larger sample sizes yielded smaller values
of FDR and larger values of EDR.

Recall from Fig. 9.1 that the signal for a rust effect was not
strong. Suppose that a two-treatment comparison study for differ-
ential expression due to a rust effect was being planned, and the
signal present in Fig. 9.1 for a rust effect was to be used as a pilot
data set for planning sample size requirements for the new study.
The P-values in Fig. 9.1 were actually obtained from a two-factorial
design structure, but for convenience and for purposes of illustra-
tion, we use this distribution as if it was obtained from a simple two
treatment comparison study. Figure 9.5 shows the technique
reported in (34) that uses the distribution of P-values for a rust
effect as a template but extrapolates EDR for various sample sizes
and reports it for three different thresholds at which a null hypoth-
esis is rejected. A smaller threshold yields a smaller EDR since fewer
null hypotheses will be rejected; however, a smaller threshold yields
a lower FDR because one is more certain that those null hypotheses
that are rejected are true discoveries. One might notice that the
EDR values in Fig. 9.5 do not rise to the level of traditional power
analyses in planning experiments. In HDEs there are many thou-
sands of hypotheses being tested and an investigator might be
content of discovering a smaller fraction of truly expressed genes
for the purpose of follow-up research. A tool for implementing the
method in (34) was reported in Page et al. (54) and is available
online at www.poweratlas.org.

There are other results in the literature regarding sample size
requirements in HDEs. Lee and Whitmore (55) investigated sam-
ple size requirements on type I and type II error probabilities.
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‘‘Power’’ was equal to 1 – P(type II error) which is analogous to the
EDR in Gadbury et al. (34). Lee and Whitmore (55) also extended
their results to situations where there may be more than two
treatment groups where interest is in determining differential
expression among several treatment groups. Pan et al. (56) used
a t-type statistic to quantify differential expression and presented a
model that, when fitted to a ‘‘pilot’’ data set, could be used to
assess the number of replicates required to achieve desired power
at a given threshold. The fitted model was considered fixed, a type
I error was specified, and power computed for any specified effect
size, e.g., standardized difference in mean expression levels
between two groups.

Zein et al. (57) considered sample size effects on pairwise
comparisons of different groups and discussed the role of both
technical and biological variabilities. Actual data sets were used to
develop parameter specifications for simulated data sets. They used
the term sensitivity as analogous to EDR, and specificity that is
analogous to 1 – FDR. They evaluated the effect of varying sample
sizes on these two quantities for various simulated data sets and
using different types of statistical tests for differential expression,
e.g., t-tests and a rank-based test. More recently Shao and Tseng
(58) presented a sample size calculation with an adjustment for
dependence among tests in microarray studies. More discussion of
power and sample size in HDEs is in (29).
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Fig. 9.5. Sample size analysis illustrated using P-values in Fig. 9.1 for a rust effect as a
pilot data set. Sample sizes reflect the number of microarrays in each of the two
treatment groups in a two-treatment comparison study.
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5. Classification
and Validation
Strategies and
Some Remarks
on Future
Developments

Thus far we have discussed design and inference issues in HDEs
and focused on the multiple testing issues when many thousands
of tests are being conducted simultaneously. Here we conclude
this chapter by discussing some other topics and techniques.

5.1. Clustering High-

Dimensional Data

Clustering is one of the earlier techniques and has been and is still
popular (33). Cluster analysis attempts to group data into classes
based on some similarity metric. An early illustration of cluster
analysis on data from an HDE is Eisen et al. (59). They used
clustering on two time course gene expression data sets and
showed that some genes of similar functions would cluster
together. They also applied a type of randomization procedure
to assess whether the clusters were real or whether they were an
artifact of the clustering procedure. Even in HDE data that are
completely random (i.e., data are generated so that there are not
real clusters), a clustering routine will find clusters, so one cannot
always be sure that a cluster is real without some technique to
assess its repeatability in similar experiments. Some have referred
to this as stability of clustering and have compared the stability of
different cluster routines under different conditions (60).

Attempts to evaluate the stability of clustering techniques have
generally used resampling techniques such as the bootstrap. Kerr
and Churchill (61) assessed the reliability of conclusions obtained
using clustering on data from microarray experiments. They used a
clustering technique on a data set and assessed the stability of
clusters on simulated data sets. The simulated data sets were
created by fitting an ANOVA model to data and resampling resi-
duals from the model in a bootstrap routine. Another resampling
approach was used to evaluate the number of clusters present in an
HDE data set where mixture models were used as a basis for
clustering (62). Kapp and Tibshirani (63) assessed the reproduci-
bility of clusters by defining a ‘‘cluster quality measure’’ that is
related to prediction accuracy, that is, the ability of a new datum to
be classified to a previously defined cluster.

To reflect the variability in an experiment due to biological
samples, the resampling unit should be at the level of the biological
specimen, i.e., a microarray in a microarray experiment (11).
However, sometimes sample sizes are too small to use resampling
at this level to evaluate the reliability of clusters. Garge et al. (60)
conducted a simulation study of four clustering techniques and
found that all four techniques produced low stability scores when
evaluated on microarray types of data sets. Although obtaining
reproducible clusters in an HDE with relatively small samples may
have challenges, clustering methods can still be useful as an
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exploratory method for obtaining a general description of how
genes covary with respect to their gene expression levels (33). One
key advantage to a reliable clustering of data in a gene expression
experiment is a reduction of dimension from one of many thou-
sands of genes to a dimension of a smaller number of clusters,
providing the clusters contain meaningful information about the
function or classification of certain sets of genes.

5.2. Gene Class Testing One challenge when analyzing data from an HDE such as a gene
expression experiment is finding ways to successfully interpret the
enormous number of results that are obtained (64). A type of
analysis has emerged that appears designed to help address this
challenge. Such analyses recognize that genes can be and have been
placed into a priori categories and they use this categorical infor-
mation in analytic strategies that can reduce the number of results
about individual genes to a smaller number of more interpretable
findings concerning classes or families. Gene class testing is a
relatively recent technique, with some methods for implementing
it still in development (45).

Many methods use Gene Ontology (GO) terms for assign-
ment of genes to classes, though other knowledge bases are
available (see (65, 66) for discussion and illustration). The idea
of gene class testing in an HDE is to identify classes or sets of
genes that are differentially expressed across one or more treat-
ment conditions, or that are associated with some phenotype.
Pavlidis et al. (67) compared two computational methods for
associating gene expression changes with age for selected sets of
genes using GO classes. The two methods used different techni-
ques to evaluate what GO classes are most associated with aging.
Mootha et al. (68) presented a gene set enrichment analysis
(GSEA) and illustrated its use on a gene expression study using
human diabetic muscle. The technique used an enrichment score
to quantify association of a gene set to a phenotypic class. The
method was also illustrated on some cancer-related data sets that
included leukemia and lung cancer (69). Goeman et al. (70)
proposed their global test procedure and illustrated it on two
examples. Their test produces one P-value for a group that is
being tested. These are just a few of the methods that have been
proposed for testing classes of genes for association with a phe-
notype or phenotypic class, e.g., ‘‘treatment’’ condition. Pan (71)
proposed fitting mixture models to classes of genes and using
these sub-mixture models within classes to determine differential
expression, somewhat similar in concept to other approaches
using mixture models that were fit to all genes, for example
(20). A limitation of mixture models is that many measurements
are usually needed to obtain a good fit (72) and, in this case, gene
classes would need to be relatively large.
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The fact that much recent development of statistical methods
has occurred in gene class testing suggest its potential usefulness
and promise as a tool for the analysis of HDE data. Many of the
current methods have prompted some concerns (73) and others
suffer from at least one flaw (33). Goeman and Buhlmann (45)
review assumptions and limitations of some of the recent methods
for gene class testing. Undoubtedly this area of research will con-
tinue as one of active interest.

5.3. Validating Methods

Using Simulations

A general discussion of validity of findings in HDEs was given in
Mehta et al. (74) and in Allison et al. (33). Here we discuss validity
in the context of statistical methods and the results that they are
designed to produce as was also done in Mehta et al. (11). Validity
of results from an HDE data analysis depends on many of the same
assumptions that are required for a valid analysis of data from a
traditional experiment. Examples are assumptions about distribu-
tions of data (or residuals), the choice of the model used, and
assumptions about random sampling and/or treatment assignment.

Many statistical methods that analyze data from HDEs pro-
duce conservative estimates of p0 and FDR (i.e., estimates tend to
be biased high). The properties of certain methods and the esti-
mates that they produce can sometimes be evaluated using math-
ematical derivations and proofs. One example is Genovese and
Wasserman (75) who looked at the FDR controlling procedure
of Benjamini and Hochberg (2). The performance of many meth-
ods and comparisons of methods have been evaluated using com-
puter simulation experiments.

One technique for simulating microarray data considered
sources of variability in such data and created simulated data sets
based on some knowledge of this variability gleaned from real data
sets (27). Many methods simulate data sets using statistical dis-
tributions, often normal distributions (e.g., (49, 76)). Correlation
structure, if considered at all, has been implemented in simulated
data using a block-diagonal correlation matrix as was done, for
example, in (20, 43).

Concern about how well-simulated data correspond to reality
has generated interest in simulated data that are derived from actual
data sets. Cattell and Jaspars (77) used the term plasmode to
describe data that are constructed to reflect some aspect of reality.
Mehta et al. (11) described a plasmode as a real (i.e., not computer-
simulated but from actual biological specimens) data set for which
some aspect of the truth is known. Plasmodes can be used to learn
about the validity and lack of validity of certain statistical methods
for microarray analysis. The great advantage of plasmodes is that,
unlike with computer simulations, one need not question whether
the particular distributions or correlations are realistic because they
are taken directly from real data. Plasmodes are beginning to show
promise as a valuable resource for the scientific community.
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One example of a plasmode is a real microarray data set with
specific mRNAs spiked-in (cf., (37, 78)). Evaluating whether a
particular method can correctly detect the spiked mRNAs gives
information about the method’s ability to detect gene expression.
Affycomp (37) is a set of tools and plasmode (spike-in) data sets on
an integrated web site that allows investigators to analyze the same
benchmark data sets using a new method.

Plasmodes could also be derived from a real data set in a
manner for which some truth is known. Gadbury et al. (79) have
explored techniques to do this in the context of a microarray
experiment for a two-treatment comparison study. A distribution
of realistic ‘‘effect sizes’’ in an HDE can be obtained by analyzing a
real data set. A data set for which the global null hypothesis is true
(the null hypothesis is true for all tests) may be obtained by divid-
ing the data for one treatment group into two pseudo-treatment
groups. Differentially expressed genes can be created by sampling
effect sizes from the experiment and incorporating them into the
data for one of the pseudo-treatment groups for a proportion
1� p0 of genes. In the resulting plasmode data set a true value of
p0 and a true value of FDR at a particular threshold can be known.
Methods can then be evaluated on their ability to estimate these
quantities.

5.4. Future

Developments Related

to High-Dimensional

Experiments

Experiments investigating genome-wide gene expression may shift
to greater use of sequencing in place of microarrays as sequencing
becomes less expensive. In this case, rather than evaluating expres-
sion for the set of genes represented on a microarray, any genes
expressed may be analyzed by determining the frequency of occur-
rence of corresponding RNA in samples. This may make it easier to
discover new genes that are differentially expressed, but it may also
make it more difficult to study genes with low levels of expression.
One difference for statistical analyses will be that only a certain
(large) number of sequences can be evaluated from each sample, so
a higher frequency of sequences corresponding to one gene will be
associated with a lower frequency of sequences corresponding to
other genes.

Proteomics, lipidomics, and metabolomics are becoming more
approachable for more plant systems. The data sets generated in
these new ‘‘Omics’’ fields may often be modeled using approaches
similar to those for studies of genome-wide gene expression (tran-
scriptomics). Ultimately a new challenge for statistics will be the
development of good comparisons of responses to treatments across
these different types of data sets. Biological questions may be
answered using different sets of findings, possibly from different
Omics experiments. As noted in Allison et al. (33), how best to
examine intersections between sets of findings is a needed area of
research as is how to evaluate complex multi-component hypoth-
eses. Bayesian approaches might be helpful in these areas.
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Chapter 10

Discrete Dynamic Modeling with Asynchronous Update,
or How to Model Complex Systems in the Absence
of Quantitative Information

Sarah M. Assmann and Réka Albert

Abstract

A major aim of systems biology is the study of the inter-relationships found within and between large
biological data sets. Here we describe one systems biology method, in which the tools of network analysis
and discrete dynamic (Boolean) modeling are used to develop predictive models of cellular signaling in
cases where detailed temporal and kinetic information regarding the propagation of the signal through
the system is lacking. This approach is also applicable to data sets derived from some other types of
biological systems, such as transcription factor-mediated regulation of gene expression during the
control of developmental fate, or host defense responses following pathogen attack, and is equally
applicable to plant and non-plant systems. The method also allows prediction of how elimination of
one or more individual signaling components will affect the ultimate outcome, thus allowing the
researcher to model the effects of genetic knockout or pharmacological block. The method also serves
as a starting point from which more quantitative models can be developed as additional information
becomes available.

Key words: Boolean model, computational biology, dynamic modeling, discrete model, network
analysis, signal transduction, systems biology.

1. Introduction

In recent years, technical advances have allowed the generation
of large data sets that describe the genomes, transcriptomes,
proteomes, and metabolomes of organisms, particularly those of
model prokaryotic, plant, and animal species. Methods are also
rapidly advancing for the large-scale analysis of how the compo-
nents of these data sets interact both with each other and across
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biological levels. For example, methods such as mass spectrometric
identification of proteins following co-immunoprecipitation
(1, 2), and yeast two-hybrid analysis (3–5) and its variants (6),
have allowed researchers to build networks that portray the protein
interactomes of model species (3, 7–9). Chromatin immunopre-
cipitation followed by query of whole-genome microarrays, the
‘‘ChIP-chip method’’ (10, 11) (also see the chapters by Morohashi,
Xie, and Grotewold and by Barkan in this volume), as well as
protein microarrays (12) has allowed discovery of the global tar-
gets of key transcription factors, allowing connections to be drawn
between the proteome and the transcriptome (13–15).

Rapid cell signaling pathways comprise one of the most chal-
lenging types of networks to identify and model. These pathways
usually involve at least two biological levels, typically the metabo-
lome and the proteome. In many situations, information on the
behavior of the signaling molecules in the intact living cell is not
experimentally accessible and cannot be deduced post hoc because
of the dynamic and often reversible nature of cell signaling events.
In addition, such networks typically include post-translational
events which alter the activity of, but not necessarily the level of,
key signaling proteins. Global methods for identification of post-
translational modifications such as protein phosphorylation
are still improving (16–18) and, more importantly, assessment of
the impact of such modifications on protein behavior (enzyme
kinetics, subcellular localization, protein turnover, etc.) is often
not available.

Here we describe a method by which cellular signaling net-
works can be assembled and modeled in predictive fashion, despite
the above limitations. Such networks consist of an input (the initial
signal or triggering event), an output (the ultimate target or
outcome of the signaling cascade), and a variable, often large,
number of internal nodes, consisting of all the known secondary
messengers, enzymes, and metabolites involved in conveying the
signal. The approach compensates for lack of detailed kinetic and
temporal information on signal propagation by considering all
biologically relevant starting combinations of the states of all
internal nodes, with each node allowed only two possible states,
either ‘‘active’’ (ON) or ‘‘not active’’ (OFF). For each one of these
starting combinations, the input is turned on, and the status of
each internal node is then changed or ‘‘updated’’ based on the
statuses of the nodes feeding into it. The internal nodes are
updated in a random order. Once every internal node has been
updated in this fashion, the outcome (i.e., the status of the output
node) is assessed.

This type of analysis is termed ‘‘discrete dynamic modeling
with asynchronous update.’’ The model is called dynamic because
it follows the change in the status of the nodes in time. It is discrete
because of the assumption of two discrete levels of activity instead
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of a continuum of levels. Asynchronous update refers to the fact
that the status of the internal nodes is updated one by one, in a
non-synchronous manner.

Below is a summary of the standard steps necessary for carrying
out this analysis:

1. Thoroughly read and assimilate the relevant literature con-
cerning the signal transduction pathway of interest.

2. Construct a table that formalizes the components (‘‘nodes’’)
of the system and the relationships (‘‘edges’’) between them.

3. Based on this table, construct the simplest possible network
that incorporates all of the information.

4. For each node, develop an equation that describes the neces-
sary condition for the node to be ON, using the Boolean
operators AND, OR, and NOT.

5. Select a status for the input node and a starting condition for
the internal nodes.

6. Update the status of the internal nodes for an increasing num-
ber of steps to find the long-term behavior of the output node.

7. Do replicate simulations and summarize the observed outcomes.

8. Assess whether the model accurately predicts known experimen-
tal results. If not, revise the network and/or the Boolean rules.

9. Assess the robustness of the model to changes in interactions
or in Boolean rules.

10. Use the model as desired to predict the outcome when spe-
cific nodes are deleted (always OFF) or overexpressed (always
ON), and use these outcomes in the planning of new wet
bench experiments. Use the results from new wet bench
experiments to revise and extend the model.

2. Materials

1. Information: Collate all available information on the biological
system of interest. This information can be obtained by keyword
searches using tools such as PubMed and Google Scholar, as
well as targeted keyword searches of the databases of journals
known to publish on the topic of interest. As described in more
detail under Methods, the information obtained should be
compiled in a standardized fashion, using formal rules.

2. Software: Networks can be generated manually. For example,
one of the more complex networks to be modeled using the
methods of this chapter, a network describing induction of
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stomatal closure by the plant hormone abscisic acid (ABA),
was manually generated (19). Since the publication of that
work a custom software package NET-SYNTHESIS has been
developed (available at http://www.cs.uic.edu/�dasgupta/
network-synthesis/) for finding the simplest representation
of the signal transduction network. The theoretical under-
pinnings of the algorithms are explained in detail in (20). The
input to NET-SYNTHESIS is a list of relationships among
biological components and its output is a network diagram
and a text file with the edges of the signal transduction
network.

The SmartDraw charting software (http://www.smartdraw.
com/) can be used to draw the network. Another good alternative
for generation and automatic layout of a range of different dia-
grams and networks is yED (http://www.yworks.com/en/
products_yed_about.htm).

Among several software packages available for graph analysis
of signal transduction networks, we recommend the Python
library NetworkX (https://networkx.lanl.gov/wiki).

Implementation of the model can be done with code generated
in-house, and two of the programming languages most often used for
this purpose are Python (http://www.python.org/) and C (http://
www.cprogramming.com/). Alternatively, we recommend using the
recently developed software application BooleanNet (http://
code.google.com/p/booleannet/) for simulation of Boolean mod-
els. The input to the software is a set of Boolean rules in a simple text
format and thus this software requires minimal programming exper-
tise. The software can be run via a web interface or as a Python library
to be used through an application programming interface.

3. Methods

3.1. Thoroughly Read

the Relevant Literature

Concerning the Signal

Transduction Pathway

of Interest

After reading all available literature on the topic, assess whether
sufficient information is on hand such that modeling would be
informative. If detailed qualitative information is available, but
quantitative information is lacking, proceed with the method of
this chapter. If sufficient quantitative information is available, the
method describe in this chapter can be superseded by other meth-
ods, such as continuous models based on ordinary differential
equations (21, 22) which can incorporate this quantitative infor-
mation. A third possibility is that there may be so little information
available that, while modeling could be done, it would not provide
information beyond that which could be readily deduced without
a formal evaluation. For example, if all that is known about a
system is that process X activates process Y which in turn activates
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process Z, one can draw a simple linear network and deduce that
knockout of Y will eliminate signaling, but a formal analysis is
hardly required.

In assessing the literature, the modeler should especially focus
on experiments that provide information of the type relevant to
network construction. Experiments that identify nodes belonging
to a signaling pathway are of several main types, including (1)
in vivo or in vitro experiments which show that the properties
(e.g., activity or subcellular localization) of a protein change
upon application of the input signal or upon modulation of com-
ponents already definitively known to be associated with the input
signal; (2) experiments that directly assay a small molecule or
metabolite (e.g., imaging of cytosolic Ca2þ concentrations) and
show that the concentration of that metabolite changes upon
application of the input signal or modulation of its associated
elements; (3) pharmacological experiments which demonstrate
that the output of the pathway of interest is altered in the pre-
sence of an inhibitory agent that blocks signaling from the
candidate intermediary node (e.g., a pharmacological inhibitor
of an enzyme or strong buffering of an ionic species); (4) experi-
ments which show that artificial addition of the candidate inter-
mediary node (e.g., exogenous provision of a metabolite) alters
the output of the signaling pathway; (5) experiments in which
genetic knockout or overexpression of a candidate node is shown
to affect the output of the signaling pathway.

Some of the major types of experiments that identify edges
(i.e., relationships between nodes) are (1) experiments that
demonstrate physical interaction between two nodes, such as
data on protein–protein interaction obtained from yeast two-
hybrid assays or in vitro or in vivo co-immunoprecipitation and
(2) experiments that demonstrate genetic epistasis between two
genes/gene products.

3.2. Construct a Table

That Formalizes the

Components (‘‘Nodes’’)

of the System

and the Relationships

(‘‘Edges’’) Between

Them

To standardize and formalize the information available from the
literature, it is valuable to next construct a table that summarizes
the elements that contribute to the signaling pathway, and the
relationships between them. In a signal transduction pathway,
there is typically an input, perceived by a receptor or ‘‘input
node,’’ followed by a series of elements or internal nodes through
which the signal percolates to the output node, which represents
the final outcome of the signal transduction process. For a cellular
signal transduction pathway not involving alterations in gene
expression, elements or ‘‘nodes’’ often consist of proteinaceous
receptors, intermediary signaling proteins and metabolites, effec-
tor proteins, and a final output node which represents the ultimate
combined effect of the effector proteins. However, other types of
biological macromolecules participate in other types of signal
transduction pathways. For example, in a qualitative model
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describing regulation of the transcript level of a particular gene, the
gene itself and the transcription factors that regulate it, as well as
any small RNAs that regulate the transcript’ abundance, would all
be intermediate signaling elements, with the final output being
presence or absence of transcript.

For the purposes of illustration, we will demonstrate the
method of dynamic modeling with asynchronous update using a
model system consisting of just four nodes: an input node ‘‘A,’’
two intermediate nodes, ‘‘B’’ and ‘‘C,’’ and an output node ‘‘D.’’
While such a system might in reality fall into the category of
‘‘formal modeling not required,’’ we have deliberately chosen a
simple system in order to allow us to clearly illustrate the funda-
mental principles of the method. For our simple example, let us say
that the relationships between our four nodes are described by the
statements found in Table 10.1.

Note that some choices may have to be made in constructing a
summary table, especially in the case where there are two conflict-
ing reports in the literature. For example, imagine that in one
report it is stated that proteins X and Y do not physically interact
based on yeast two-hybrid analysis, while in a second report, it is
described that proteins X and Y do interact, based on co-immu-
noprecipitation from the native (e.g., plant) tissue. The modeler
will need to decide which information is more reliable and proceed
accordingly. Such aspects dictate that human intervention will
inevitably be an important component of the literature curation
process, even as automated text search engines such as GENIES
(23–25) grow in sophistication.

Table 10.1
Compile a table that uses simple terms to describe the
relationships between nodes. In this table, positive inter-
actions are indicated by arrows and negative interactions
are indicated by blunted lines. When a node provides input
into the relationship of two other notes, that relationship
is described by the words ‘‘promotes’’ or ‘‘inhibits’’

A! B

A ---\ C

B! D

C --\ D

B A! D promotes

C A! D inhibits
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3.3. Based on This

Table, Construct the

Simplest Possible

Network (i.e., the

Network with the

Fewest Edges) That

Incorporates All of the

Information

According to Table 10.1, the simplest possible network is the one
depicted in Fig. 10.1. While it is relatively easy to see how the
network of Fig. 10.1 is constructed from the data of Table 10.1,
modeling of a multi-component biological network is considerably
more complicated. Simplifying assumptions that should be used are
illustrated in Fig. 10.2; these assumptions can also be tailored to
specific networks. These simplifying assumptions are formalized and
incorporated in the software package NET-SYNTHESIS (see
Materials).

Additional information can also be added to the network.
For example, if two proteins have been shown to interact geneti-
cally, but physical interaction has not been demonstrated, an
intermediate node, consisting of a small black filled circle (cf.
Fig. 10.3), can be added to the network. The presence of this
intermediate node leaves open the possibility that additional

A

C

D

B

Fig. 10.1. An example of a simple four-node network. In this four-node network example,
node A is the input and node D is the output. Nodes B and C are intermediate or internal
nodes. Interactions between the nodes are represented by edges (lines). Positive
interactions are indicated by arrows and negative interactions are indicated by blunted
lines.

Fig. 10.2. Simplifying interference rules for network reconstruction.
1. If A!B and C! process(A!B), where A!B is not a biochemical reaction such as

an enzyme catalyzed reaction or protein–protein/small molecule interaction, we
assume that C is acting on an intermediary node (IN) of the A–B pathway.

2. If A!B, A!C, and C!process(A!B), where A!B is not a direct interaction, the
most parsimonious explanation is that C is a member of the A–B pathway, i.e., A!C
!B.

3. If A --| B and C --| process(A --|B), where A –|B is not a direct interaction, we assume
that C is inhibiting an intermediary node (IN) of the A–B pathway. Note that A!IN--| B
is the only logically consistent representation of the A–B pathway.

This figure and figure legend are reproduced from (19).
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Fig. 10.3. An example of a complex signaling network. The network for induction of stomatal closure by the plant hormone
ABA based on data available as of 2006.
Nodes in this graph include
Input¼ signal hormone ABA
Enzymes (red): ADP ribose cyclase (ADPRc), guanyl cyclase (GC), nitric oxide synthase (NOS), nitrate reductase (NIA12),
NADPH oxidase (Atrboh), phospholipase C (PLC), phospholipase D (PLD), sphingosine kinase (SphK), phosphoenolpyruvate
carboxylase (PEPC), inositol polyphosphate kinase (InsPK);
Signal transduction proteins (green): farnesyl transferase (ERA1), heterotrimeric G protein � (GPA1) and b component
(AGB1), protein kinase (OST1), protein phosphatase 2A (RCN1), protein phosphatase 2C (ABI1/2), protein phosphatase 2C
(AtPP2C), putative GPCR (GCR1), small GTPases (ROP2/ROP10/RAC1), actin cytoskeleton disruption (actin), mRNA cap
binding protein (ABH1);
Membrane transport (blue): anion efflux at the plasma membrane (AnionEM), Ca2þ influx to the cytosol from intracellular
stores (CIS), Ca2þ influx across the plasma membrane (CaIM), potassium efflux through rapidly activating Kþ channels (AP
channels) at the plasma membrane (KAP), Kþ efflux through slowly activating outwardly rectifying Kþ channels at the
plasma membrane (KOUT), Kþ efflux from the vacuole to the cytosol (KEV), Hþ ATPase at the plasma membrane
(HATPase), Ca2þ efflux from the cytosol (Ca2þ ATPase);
Secondary messengers and small molecules (orange): cytosolic Ca2þ increase (Ca2þ

i), Arg (arginine), cADPR, cGMP, DAG,
GTP, InsP3, InsP6, nitrite, NO, PIP2, PA (phosphatidic acid), S1P (sphingosine-1-phosphate), Sph (sphingosine), PC
(phosphatidyl choline), malate.
Output¼ stomatal closure
Small black filled circles represent putative intermediary nodes mediating indirect regulatory interactions. Arrowheads
represent activation; short perpendicular bars indicate inhibition. Purple lines denote interactions derived from species
other than Arabidopsis or inferences made during the network synthesis process. Nodes involved in the same metabolic
pathway or protein complex are bordered by a gray box; only those arrows that point into or out of the box signify
information flow.
This figure and figure legend are reproduced from (19).
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intervening elements can be specified as information becomes
available. If information has been compiled from different biolo-
gical species, edges (connecting lines) can be color-coded to indi-
cate the biological species from which the information was
obtained (cf. Fig. 10.3).

In some instances it is beneficial to simplify an overly complex
network by reducing the number of nodes that are of lesser interest.
Simply deleting ‘‘uninteresting’’ nodes would eliminate the indirect
connections among interesting nodes mediated by them and is thus
not an option. We can however collapse pairs of uninteresting nodes
if they mediate the exact same relationships among interesting nodes
and this can be executed using the software NET-SYNTHESIS.

At this point, the network has been constructed, and some useful
information can already be derived. For example, one can assess
whether the network includes hubs, which are nodes with a much
greater-than-average number of inputs and/or outputs, which may
then prove more essential to the functioning of the network. One can
also determine the minimum path length between input and output
and assess the presence or absence of distinct regulatory motifs, such as
negative and positive feedback loops. One can also evaluate the extent
to which nodes are interconnected; if there is little interconnectivity
(crosstalk), such that there are a number of completely independent
(parallel) paths between the input and output nodes, this implies that
the system has greater redundancy and thus greater resilience to
perturbation, with the caveat that such path analysis cannot assess
possible synergistic effects on the output of two independent paths.

3.4. For Each Node,

Develop an Equation

That Describes

the Necessary

Condition for That

Node to Be on, Using

the Boolean Operators

AND, OR, and NOT

To proceed beyond a static network description of the system to
actual modeling, the next step is to formally describe the state of
each node (active or inactive) based on the states of the nodes that
supply inputs to it. The state of each regulated node can change if
the state of any of the input nodes changes; thus one needs to
specify the change in state, i.e., the next state of the regulated
node, as a function of the current state of its regulators. In the
absence of quantitative information, this formal description is
achieved using the Boolean operators AND, OR, and NOT. In
those cases where there is only one input to a node, it is straight-
forward to describe the Boolean rule for that node. For example, in
the network of Fig. 10.1, node B will be ON if node A is ON,
and node C will be OFF if node A is ON. We can therefore write

B� ¼ A ½1�
C� ¼ NOT A ½2�

where the asterisks signify the next states of nodes B and C, respectively.
However, when nodes have multiple inputs, describing the

Boolean rule may be more complicated. For example, in our net-
work of Fig. 10.1, two possible Boolean rules could be written
to describe the activation of node D:
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D� ¼ B AND ðNOT CÞ ½3�
D� ¼ B OR ðNOT CÞ ½4�

The scientist must rely on information available from the
literature, combined with her or his expert knowledge, to devise
the Boolean rule that best describes the actual biological situation.
For the purposes of illustration we will assume that the AND rule
(Eq. [3]) reflects the true biological situation: for node D to be
turned on, both activation from B and loss of inhibition by C are
required. However, if there were actual experimental data demon-
strating that node D still could be turned on when A was activated
in a knockout mutant of node B, then, out of the two rules given
above, the OR rule (Eq. [4]) would be more likely to reflect
biological reality.

In addition to compiling information in equations such as
those given above, the outputs from a Boolean rule can also be
summarized in a truth table (Table 10.2), and constructing such
a truth table (which can be done manually or with a simple
computer code) is indeed needed for the actual modeling pro-
cess. The truth table of a Boolean rule indicates the next state of
the regulated node (the node on the left hand side of the
equation) for every combination of the states of its inputs (i.e.,
the nodes that appear on the right hand side of the equation).
Note that such a table has 2n entries where n equals the number
of inputs. For simplicity, and in accordance to Boolean algebra,
the ON state is usually represented as 1 and the OFF state is
represented as 0 in truth tables.

Table 10.2
Truth tables for the three regulated nodes of the net-
work illustrated in Fig. 10.1, based on the three
Boolean rules: (1) B*¼ A; (2) C*¼NOT A; (3) D*¼B
AND (NOT C). A 0 signifies that the node is OFF; a 1
signifies that the node is ON

Entry A B*

1 0 0 Entry B C D*

2 1 1 5 0 0 0

6 0 1 0

Entry A C* 7 1 0 1

3 0 1 8 1 1 0

4 1 0
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3.5. Select a Status

for the Input Node

and a Starting

Condition for

the Internal Nodes

The input node represents the signal to be transduced by the
network. Usually setting its status to be continuously on once
the simulation has commenced is the best representation of the
biological process to be modeled. One could also explore scenarios
where the signal changes in time (following a prescribed pattern or
stochastically). It is also beneficial to consider the case where the
input is off to verify whether the signal is required to observe the
correct output in the model. A comparison of the model’s beha-
vior with the experimentally observed behavior will indicate
whether changes are needed to the model’s assumptions (see
next steps).

It usually is most realistic to assume that the output node is
initially off. In addition to setting the status of the input and
output nodes, one needs to set a starting condition (state) for
the internal nodes. If information is available on the resting state
of these nodes, it should be incorporated in this initial status, for
example all internal nodes could be set to OFF if it is known that
prior to receiving the signal they have low abundances and/or
activities. If an all-OFF initial status is not realistic but there is no
specific information on the initial condition of internal nodes, the
modeler should set the initial condition of each internal node
randomly and sample over a large number of initial conditions to
find an overall behavior that does not depend on the details of the
initial condition (e.g., (19)).

3.6. Update the Status

of the Internal Nodes

for an Increasing

Number of Steps to

Find the Long-Term

Behavior of the Output

Node

The interactions and regulatory relationships described by the
Boolean rule of each node will usually cause a change in the state
of the node from the state specified in the initial condition. The
new (updated) state of each node can be looked up from the truth
table for that node using as inputs the current state of the node’s
regulators. For example, if in the network of Fig. 10.1 the status
of the input node A is 1 (ON), the updated state of node B will also
be 1 (ON), regardless of the initial state of B.

The order in which each node’s status is updated can have a
considerable effect on the dynamics of the system; thus the mode-
ler needs to select the update method best fitting the information
available about the system. The simplest and traditionally used
formalism assumes that the processes represented as edges in the
network have similar durations, and correspondingly node states
are updated simultaneously at multiples of a fixed timestep. This
update method is called synchronous update. For example, if in
our four-node network the status of the input node is A¼1
and the initial condition for the internal and output nodes is B0¼
C0¼D0¼0, at the first update the states specified in the initial
condition are used to determine the first-timestep state of the
nodes. Substituting the input and initial states into the truth
table (Table 10.2) we find B1¼1 (from entry 2), C1¼0 (from
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entry 4), and D1¼0 (from entry 5). The second update uses the
status of the nodes after the first update as inputs and thus
leads to B2¼1 (from entry 2), C2¼0 (from entry 4), and
D2¼1 (from entry 7). Note that the states of nodes B and C
have not changed after the update. Update is not synonymous
with change in this context.

Synchronous update cannot properly account for the different
time scales over which various events take place in a biological
system. Most often these time scales are not known at all; none-
theless imposing the equality of all time scales, as the synchronous
model does, introduces an artificial constraint. We can extend the
basic model to account for different timescales by instead perform-
ing the updates in a non-synchronous order within each iteration.
This update method is called asynchronous update. If there is
insufficient timing information available, the update order can be
selected randomly from all possible permutations of the internal/
output nodes. In our four-node example there are 3!¼3*2*1¼6
permutations of the three updatable nodes (B, C, D). Let us say
that the first update order is B, then D, then C. Starting from the
same initial condition A¼1, B0¼C0¼D0¼0 as before, update of
B uses A¼1 and yields B1¼1 (from entry 2), update of D uses
B1¼1 (because node B has already been updated) and C0¼0 and
yields D1¼1 (from entry 7), update of C uses A¼1 and yields
C1¼0 (from entry 4). Let us now choose C, then B, then D as the
next update order. Update of C uses A¼1 and yields C2¼0 (from
entry 4), update of B uses A¼1 and yields B2¼1 (from entry 2),
update of D uses B2¼1 and C2¼0 and yields D2¼1 (from entry
7). Note that the sequence of states for nodes B and C was the
same in both synchronous and asynchronous update, because they
only depend on the input node A, but the sequence of the output
node’s states was different in the two cases. Other update orders,
for example B then C then D in the first update round, would give
the same sequence as synchronous update. Thus, random choice
of update orders introduces stochasticity into the evolution of the
system and allows it to sample all timescales.

In many cases after several rounds of update the status of
some or all nodes stabilizes and does not change anymore. If the
whole system’s state stabilizes, the resulting state is called a
steady state. The steady states of a Boolean model depend only
on the Boolean rules (truth tables) describing the regulation of
nodes. Importantly, the steady states do not depend on the
update order of the nodes, because the updates do not lead to
any state changes in the steady state. The steady states allowed by
a Boolean model can be determined analytically by noting that in
the steady state the ‘‘next’’ state of each node equals its current
state; thus the update rules become a system of equations that
can be solved. In the case of our example network this system of
equations is
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B ¼ A

C ¼ NOT A

D ¼ B AND (NOT C)

and admits two solutions, one for each state of the input node A
(see Table 10.3).

There is no inherent property of Boolean models that requires
them to achieve a steady state. Boolean models may also reach a
repeating sequence of states called a cycle. This cycle can be very
long, but ultimately every sequence of states must be cyclical
because the total number of states in the network is finite and
equals 2N, where N is the number of nodes in the network. Fixed
states or repeating state sequences are both denoted attractors.
The same network may reach a steady state or a cycle depending on
the initial conditions. Thus each attractor is associated with a set of
states (called its domain of attraction) that, if used as an initial
condition, converge into that attractor. Asynchronously updated
Boolean models have the same steady states as their synchronously
updated versions, but they usually have more and longer cycles
(26). In signal transduction networks we are sometimes less inter-
ested in the state of internal nodes and more interested in the state
of the output node(s). In such instances, it is sufficient to observe
the long-term behavior (attractors) of the output node(s).

3.7. Do Replicate

Simulations

and Summarize

the Observed

Outcomes

Synchronous models starting with a given initial condition will always
reach the same state after the same number of steps. This is due to the
fact that the system is entirely deterministic (reproducible). The
domains of attraction of each attractor can be determined by doing
repeated simulations starting from every relevant initial condition. In
synchronous Boolean models the domains of attraction of each
attractor are non-overlapping; thus in principle one can completely
map the state space of these models. In practice this is very time
consuming for networks with more than ten nodes.

Table 10.3
Steady states for the network illustrated in
Fig. 10.1, based on the three Boolean rules:
(1) B*¼A; (2) C*¼NOT A; (3) D*¼ B AND
(NOT C). A 0 signifies that the node is OFF; a
1 signifies that the node is ON

Entry A B C Output (D)

1 0 0 1 0

2 1 1 0 1
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In contrast to the synchronous model, in an asynchronous
model, because of the added complexity due to different update
orders, the domains of attraction can be overlapping. In other
words, the same initial condition can lead to different attractors for
different update orders. Fortunately, this is less frequent in models of
signal transduction networks because they tend to be highly
(although not completely) directional and the value of the signal
strongly channels the dynamics of the system. For example, in our
simple network of Fig. 10.1, all initial conditions coupled with the
input A¼1 lead to the steady state under entry 2 in Table 10.3, and
an output state D¼1, regardless of the update order of the nodes.

The dynamic behavior and attractors of a Boolean model are
outcomes that cannot be directly specified when formulating the
model. The inputs to the model are the nodes and update rules
(truth tables). If there is a known steady state or cycle in the system
that is being modeled and the model does not reflect it, the
modeler needs to reassess the network and the update rules and
then rerun the simulation to check whether the desired dynamic
behavior has been obtained (see next step).

In the network for ABA-induction of stomatal closure which we
modeled (Fig. 10.3; (19)), there are 38 internal nodes, but only one
attractor, a steady state, for the output node (closure), for each state of
the input node (ABA). Specifically, closure¼1 for ABA¼1 and clo-
sure¼0 for ABA¼0. This agrees with the biological reality formu-
lated qualitatively as ‘‘ABA signaling causes closure of previously open
stomata.’’ Different initial conditions for the internal nodes and differ-
ent update orders only affect the time when the output node reaches
the correct steady state, but all replicate simulations stabilize within
eight rounds of update. The number of rounds of update required for
stabilization of all replicate simulations is a rough indication of the
‘‘worst-case’’ timing in the real system (i.e., the time necessary to reach
the correct outcome from the less advantageous initial conditions).
The unit of time, i.e., the duration of a round of update, corresponds to
the duration of the longest process that is represented by an edge in the
network. In a manner of speaking, this number represents the max-
imum number of dynamical steps needed for the signal to propagate to
the output. Eight rounds of update, as compared to the number of
internal nodes, indicate that the signal has more efficient routes than
propagating step by step through every internal node.

3.8. Assess Whether

the Model Accurately

Predicts Known

Experimental Results.

If Not, Revise the

Network and/or the

Boolean Rules

The validity of the model can be assessed by comparing the attrac-
tors in the model as well as their domains of attraction, with
relevant experimental information. For example, both the four-
node model and the ABA-induced stomatal closure model of Li
et al. (19) indicate that the steady state of the output node only
depends on the value of the input node. If there is a discrepancy
between the actual biological outcomes and the ‘‘in silico’’ out-
comes predicted by the model, then the model needs to be revised.
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For example, if for the real biological system an attractor exists in
which the output node is on even though the input node is off, or
in which the output node is off even though the input node is on,
for example due to the phenomenon of crosstalk and cross-activa-
tion of the same signaling pathways by other networks not
included in the model (such crosstalk is well known to occur in
plant signaling (27, 28)), then the modeler needs to include addi-
tional inputs to the network. For example, in the model of
Fig. 10.1, the addition of a second input node E, and the mod-
ification of the Boolean rule of node D to
‘‘D*¼B AND (NOT C) OR E,’’ will create a steady state A¼0,
B¼0, C¼1, D¼1, E¼1, i.e., A¼0 is not always associated with
D¼0 anymore. Changing the Boolean rule of node D to ‘‘D*¼B
AND (NOT C) AND (NOT E)’’ will create a steady state A¼1,
B¼1, C¼0, D¼0, E¼1, i.e., A¼1 is not always associated with
D¼1 anymore.

3.9. Assess

the Robustness

of the Model to

Changes in

Interactions or

in Boolean Rules

A biological system is said to be robust if it maintains the appropriate
output in the face of perturbations and fluctuations. One could
imagine that robustness is a property that would confer an adaptive
advantage under many circumstances and thus would undergo posi-
tive selection over evolutionary time. A model is said to be robust if its
outcome does not change when the model is subjected to small
random perturbations in parameters or assumptions. If a model
lacks robustness, this could reflect the true property of the biological
system. However, since many cell signaling systems that have been
evaluated in this context have been found to indeed exhibit the
property of robustness (29–31), if such a system is modeled and the
model is found to lack robustness, i.e., is ‘‘fragile,’’ then the accuracy
and sufficiency (completeness) of the model may be suspect.

One common way to evaluate the robustness of a network
model is to determine how susceptible the network outcome is to
node rewiring. Rewiring can take the form of randomly switching a
positive (activating) edge to a negative (inhibitory) edge or vice
versa, randomly adding an edge between two extant nodes in a
network, or randomly rewiring pairs of positive or negative edges
(19, 32). The robustness of Boolean models to alternative assump-
tions is assessed by randomly interchanging OR and AND rules
(i.e., interchanging the assumption of independent activity with
the assumption of conditional dependence). The method of asses-
sing all single node disruptions and then calculating the percentage
of cases in which the output is altered as a result probes both the
model and the system that is modeled. A model does not have to
be robust to every possible change in interactions, assumptions, or
parameters to be considered fragile, just as cellular signaling sys-
tems are not robust to all perturbations. However, some degree of
robustness, e.g., robustness to interchanging a certain percentage
of AND and OR rules, is expected from a model.
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3.10. Use the Model as

Desired to Predict the

Outcome When

Specific Nodes Are

Deleted (Always OFF)

or Overexpressed

(Always ON), and Use

These Outcomes in the

Planning of New Wet

Bench Experiments.

Use the Results from

New Wet Bench

Experiments to Revise

and Extend the Model

Once the model has been shown to accurately simulate known
information, it can be used to predict results of experiments that
have yet to be conducted. For the simple model of Fig. 10.1,
we can consider the predictions for knockout (always OFF) or
overexpression (with the simplifying assumption that overexpres-
sion is equated to ‘‘always ON’’) of the intermediate nodes. Looking
at the truth table for node D in our simple network (Table 10.2),
we see that knockout of node B (node B always set to 0) corresponds
to entries 5 and 6, and we see that for these entries the output
(node D) is always OFF. Therefore, we predict that if our Boolean
rule describing node D is correct, then a genetic or pharmacological
knockout of node B will result in a phenotype in which node D is
never observed to turn on.

However, what if we actually knocked out node B and found
that an output from node D was still sometimes observed? This
would be impossible according to the Boolean rule of Eq. [3] but,
as illustrated in Table 10.4, would be expected according to the
Boolean rule of Eq. [4]. Therefore, such an outcome would lead
us to revise the Boolean rule for node D.

Conversely, we can also make predictions for the phenotype of
overexpression of node B (node B always set to 1). According to
Table 10.2, node D would be activated for entry 7 but not for
entry 8, while according to Table 10.4, node D would always be
ON when node B was overexpressed. Thus we can see that the
combined results from experiments of knocking out node B and
overexpressing node B are likely to be very informative concerning
whether Eq. [3] or Eq. [4] (or neither) is the correct portrayal of
the biological system.

Table 10.4
Truth tables for the network illustrated in Fig. 10.1, based
on the three Boolean rules: (1) B*¼ A; (2) C*¼NOT A; (3)
D*¼ B OR (NOT C). A 0 signifies that the node is OFF; a 1
signifies that the node is ON. As shown below, the truth
table of node D looks quite different from that of Table
10.2 when Eq. [4] is used to define it

Entry A B*

1 0 0 Entry B C D*

2 1 1 5 0 0 1

6 0 1 0

Entry A C* 7 1 0 1

3 0 1 8 1 1 1

4 1 0
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However, there may also be situations where the predictions
suggest that certain wet bench experiments will not be informa-
tive, and therefore time, effort, and funding should not be spent
on them. For example, assume that a genetic knockout of a node
is equivalent to setting that node as permanently OFF (¼0).
Then, according to the Boolean rules of Table 10.2, knocking
out node C would not be informative, because the status of node D
(the output) can be 0 or 1 regardless of whether C is 0 or 1.
However, a knockout of B would be informative, because such a
knockout would be predicted never to achieve an output of D*¼1.

While in the simple model of Fig. 10.1 it is easy to observe the
predictions of knockout and overexpression phenotypes, as the
model becomes more complex, this will not be the case. For example,
in the network for ABA-induction of stomatal closure which we
modeled (Fig. 10.3; (19)), there are 38 internal nodes. It would be
very laborious to write out and evaluate truth tables for all the single,
double, and triple knockout combinations of these nodes. However,
by modeling this system as described above, we found that, out of all
possible double mutant combinations, only 16% were predicted to
completely block ABA signaling. We therefore expect that an initial
focus on producing and analyzing these double mutants is more likely
to prove fruitful than an approach in which double mutant combina-
tions are randomly or arbitrarily chosen for investigation.

Analysis of the network structure can also prove useful in
design of future experiments. For example, in our model of
ABA-induced stomatal closure, based on information known at
the time the network was constructed, we had nine nodes as
immediate downstream targets of ABA. Obviously, if it were
found that some of these nodes were not independent, but rather
participated in the same branch of the signaling pathway, the net-
work structure would be simplified. Therefore, a focus on combi-
natorial tests of protein–protein interaction between these nine
nodes is suggested as an important next experiment.

One of the realities for the modeler is that models become
outdated almost as soon as they are published: new nodes are uncov-
ered that must be added to the system and relationships between
nodes become better defined. Redrawing the network and revising
the Boolean rules take relatively less time than rerunning the entire
simulation with the new parameters. Therefore the modeler must
decide when there is sufficient new information to justify this task.

4. Conclusions

This chapter has described network analysis and discrete dynamic
modeling primarily in the context of cell signaling pathways. It is
important to note that this method is not limited to cell signaling but
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can be applied to any system for which sufficient qualitative informa-
tion is available concerning the components of the system and their
inter-relationships. Some other systems that have been dynamically
modeled to date include host–pathogen interactions (33), inverte-
brate development (26, 34), and floral morphogenesis (35, 36).

In addition, the method can be expanded to include additional
qualitative information that goes beyond the simplest ON/OFF for-
mulation of the Boolean model. For example, a model with more
parameters than the parameter-free asynchronous Boolean model
was used to predict host immune responses to bacteria of the genus
Bordetellae, the causative agent of whooping cough and related diseases
(33). In a discrete model describing segmentation in Drosophila
embryos, functional products or activities of specific genes were
assigned specific integer values that ranged from 0 to 3, and functional
threshold values were also assigned to the gene products (37); thus this
model was still qualitative but expanded beyond the two-level Boolean
format. A similar approach has been applied to the modeling of root
hair development (38). Further, a mixed or hybrid model can be
developed when partial quantitative information is available. For exam-
ple, in a further quantification of the Drosophila segmentation net-
work, piecewise linear differential equations were developed to
continuously describe the state of each node of the network (26, 39).
BooleanNet contains a module for such piece-wise linear modeling.
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Chapter 11

Quantification of Variation in Expression Networks

Daniel J. Kliebenstein

Abstract

Gene expression microarrays allow rapid and easy quantification of transcript accumulation for almost
transcripts present in a genome. This technology has been utilized for diverse investigations from studying
gene regulation in response to genetic or environmental fluctuation to global expression QTL (eQTL)
analyses of natural variation. Typical analysis techniques focus on responses of individual genes in isolation
of other genes. However, emerging evidence indicates that genes are organized into regulons, i.e., they
respond as groups due to individual transcription factors binding multiple promoters, creating what is
commonly called a network. We have developed a set of statistical approaches that allow researchers to test
specific network hypothesis using a priori-defined gene networks. When applied to Arabidopsis thaliana
this approach has been able to identify natural genetic variation that controls networks. In this chapter we
describe approaches to develop and test specific network hypothesis utilizing natural genetic variation. This
approach can be expanded to facilitate direct tests of the relationship between phenotypic trait and
transcript genetic architecture. Finally, the use of a priori network definitions can be applied to any
microarray experiment to directly conduct hypothesis testing at a genomics level.

Key words: Microarray, network, quantitative, systems biology, hypothesis test.

1. Introduction

Phenotypic variation of animals and plants, including disease sus-
ceptibility and development, is controlled by quantitative trait loci
(QTLs) whose underlying molecular mechanisms are typically
studied in QTL mapping experiments (1–3). QTLs are regions
of the genome where genetic diversity is associated with phenoty-
pic variation in a specific trait or, if pleiotropic, a suite of traits.
These regions may contain genes whose differential expression
controls the associated phenotypic variation. Previous methods
to link phenotypic variation to its genetic cause required intensive
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fine-scale mapping experiments. Recently, the genomic technique
of microarray-based transcriptomics has been applied to more
quickly link phenotypic trait variation with transcriptome varia-
tion. This approach uses microarrays to measure global gene
expression across a sample of individuals from a natural popula-
tion. These gene expression values are then used to map expression
QTLs (eQTLs) (4–11) or to assess association between transcript
variation and phenotypic variation using association mapping style
approaches (12–14). These genomics technologies may enable reverse
(natural variation) genetics approaches to identify the genetic basis of
quantitative traits and facilitate our understanding of network variation
within plants (15–19).

The goal of global eQTL analysis is to quickly identify loci
controlling the expression variation of gene networks that control
distinct biological functions. One approach (4, 6) is to generate a
mapping population, assess global gene expression using micro-
arrays, and identify eQTLs controlling the expression of each gene
via individual statistical analyses. The eQTL locations for all genes
are then summed, ‘‘summation’’ approach, to identify common
regions that control the expression of more genes than expected by
random chance, frequently referred to as eQTL hotspots (4, 6, 10,
11, 20–22). This approach is complicated by the potential that
individual transcript levels are potentially more variable than the
network controlling them. As such, the statistical analysis of indi-
vidual genes is likely to have significant false-positive and false-
negative errors confounding attempts to interpret the biological
meaning of any eQTL analysis.

A second complication of the summation is that this requires a
posteriori tests to assess whether the genes controlled by an iden-
tified eQTL hotspot share a common biological function (e.g., a
metabolic pathway, transcriptional co-regulation, similar gene
ontology functional annotation) (23, 24). As such, this is descrip-
tive and relies on the presence and absence of individual genes in
the list of transcripts significantly controlled by the QTL in ques-
tion. Hence, we desired to devise a quantitative approach that
would allow for the generation of specific hypothesis about tran-
scriptional networks and testing of these hypothesis using micro-
array analysis of natural genetic variation (25).

In our approach we define the gene networks prior to the
statistical analysis allowing quantitative network testing or net-
work eQTL mapping (25). To develop gene networks we rely on
existing databases containing either gene co-expression values or
predicted metabolic pathways. We define gene networks as a co-
regulated set of genes involved in a common biological process.
Once we define the networks, we obtain a quantitative measure-
ment of the transcriptional activity of the network by averaging
across the individual genes within the network. This single net-
work activity metric can then be used to associate with phenotypic
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variation or to map eQTL controlling biological networks.
A benefit to this approach is that it is possible to predict a network
and then identify the loci controlling the network. Further, it allows
for rapid hypothesis generation about the biological impact of specific
eQTL clusters. A final use of this approach is to apply standard
statistical methodologies to test if networks are regulated in response
to diverse inputs using standard experimental designs. In this chapter,
we describe the approaches and tools required to generate and eval-
uate transcriptional networks using natural genetic variation.

2. Materials

2.1. Arabidopsis An excellent model plant system for studying quantitative genetics
is Arabidopsis thaliana. There is a rapidly developing set of both
genomics tools and genetic variation populations that greatly aid
development and testing of approaches to conduct quantitative
network analysis of natural variation.

2.1.1. Natural Genetic

Populations

Populations used to study natural genetic variation can be gener-
ally classified into structured populations or association popula-
tions. Structured populations have known parents allowing for
accurate recombination measurements and the application of stan-
dard QTL mapping approaches (2). Recently, natural genetic
variation in association populations has begun to be queried
using linkage disequilibrium mapping approaches (26–28). Struc-
tured mapping populations have less genetic variation than asso-
ciation populations but it is unknown if this difference in genetic
variation necessarily correlates to levels of phenotypic variation in
the two population structures.

2.1.1.1. Structured

Populations

In Arabidopsis, the main structured populations are made using
the recombinant inbred line (RIL) structure where two parents are
crossed and the progeny then undergo single seed descent for at
least eight generations. After eight generations each resulting line
is a homozygous mixture of the two parental genotypes. There are
numerous RIL populations in existence in Arabidopsis, with the
main populations being the Bay-0 � Sha, Ler � Col-0 and Ler �
Cvi (29–33). These populations are of decently large size and have
been phenotyped for innumerous diverse phenotypes. In addition
to these populations, there are new populations in development or
recently released (34–36). Important features of these populations
are that they have already been genetically mapped and this infor-
mation and the lines are or soon will be available from The Arabi-
dopsis Resource Center (www.arabidopsis.org).
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2.1.1.2. Association

Populations

Recent work is suggesting that association mapping populations
are a complementary approach to using structured populations for
quantitative analysis of networks (27). These populations consist of
large collections of diverse Arabidopsis accessions with unknown
ancestry (26–28). These populations are designed to contain the
vast majority of genetic diversity within Arabidopsis providing a rich
source of allelic diversity. This is done by sampling a very large
population of accessions and then choosing a smaller experimental
population that contains the maximal level of diversity within the
larger population. The individual accessions have been genotyped at
a large number genetic loci using genomics technologies including
near complete genome resequencing (37–39) and this sequence or
genotyping information is freely available (www.arabidopsis.org).
The accessions in these populations are freely available from The
Arabidopsis Resource Center (www.arabidopsis.org).

2.1.2. Microarray Data

2.1.2.1. Genetic Variation

Data Sets

Microarrays have been utilized to survey transcript accumulation
variation in structured Arabidopsis populations (10, 11) and small
association populations (12–14, 40). The microarray data for the
Bay � Sha RIL population and one small association population
can be obtained from elp.ucdavis.edu (10, 12, 14). Alternatively, this
data can be downloaded from ArrayExpress as data sets E-TABM126
and E-TABM62 (www.ebi.ac.uk/microarray-as/aer/?#ae-main[0]).
This database will provide either the raw .CEL files or the normalized
gene expression data. Replicated microarray data for another associa-
tion population can be downloaded from www.weigelworld.org/
resources/microarray/AtGenExpress (40). Currently, the microarray
data on the Ler � Cvi RIL population appears to be available via
personal communication with the authors (11).

2.1.2.2. Co-expression

Databases

The transcriptomic response of Arabidopsis to various environmental,
genetic, and developmental perturbations has been intensively quer-
ied using microarrays. Most of this data is compiled into databases
including www.genevestigator.org, www.Arabidopsis.leeds.ac.uk/
ACT, and http://www.atted.bio.titech.ac.jp (41–46). These data-
bases allow the researcher to enter a specific gene or set of genes to
identify all other genes that show similar transcriptional variation
within the whole database or a subset of the database. This provides
an excellent data source for the generation of hypothetical networks
as described in Section 3.1.1.

2.1.3. Metabolic Network

Databases

Biosynthetic pathways are frequently co-regulated at the transcript
level and as such are excellent sources of network hypothesis
(47, 48). The Aracyc database for Arabidopsis contains an extensive
list of enzyme encoding genes and their predicted or proven reac-
tions. This database links enzymes and their corresponding genes

230 Kliebenstein



into predicted or proven metabolic pathways that can be treated as
networks (49, 50). This includes both primary and secondary meta-
bolic networks. This database is readily accessible or completely
downloadable at the Arabidopsis webpage (www.arabidopsis.org)
to aid in network generation as described in Section 3.1.3.

2.2. Barley Barley (Hordeum vulgare) is the other plant species that has a large
existing mapping population that has been intensively analyzed
using genomic microarray data. These are both required to enable
a network analysis of network eQTL.

2.2.1. Natural Genetic

Populations

The main population for quantitative analysis of transcript net-
works in Barley is a doubled haploid population obtained from a
cross of the Steptoe and Morex inbred parents. This doubled
haploid population consists of 139 lines that have been high-
throughput genotyped to create a dense marker map (51). This
population also has extensive phenotypic information available for
the lines across multiple environments with significant replication
(wheat.pw.usda.gov/ggpages/SxM/phenotypes.html).

2.2.2. Microarray Data

2.2.2.1. Genetic Variation

Data Sets

The microarray data for the Steptoe � Morex DH population is
available from ArrayExpress as data set E-TABM-112 (http://
www.ebi.ac.uk/microarray-as/aer/?#ae-main[0]) (9, 51). This
database will provide either the raw .CEL files or the normalized
gene expression data.

2.2.2.2. Co-expression

Databases

Barleybase (www.barleybase.org) is a database containing numer-
ous microarray experiments from Barley that can allow a researcher
to query for co-expressed genes (52, 53). Additionally, microarray
data can be downloaded to allow researchers to apply their own co-
expression analysis or alter the statistical parameters at their desire.
This can be done using a validated batch-learning self-organizing
map approach as previously described (54). This provides an
excellent data source for the generation of hypothetical networks
as described in Section 3.1.1.

2.3. Other Species While barley and Arabidopsis are currently the plant species that
contain both the genetic populations and microarray analysis to
allow for large-scale quantitative analysis of network variation,
there are additional projects underway that will assuredly gener-
ate similar data for other species. For instance, maize and rice
have large mapping populations available that only require the
application of microarrays to generate the necessary transcript
variation measures (55). Numerous other plants have had tar-
geted microarray analysis of natural genetic variation to address
specific questions showing the broad applicability of this
technology (8, 56–63).
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3. Methods

In the a priori approach to network analysis of gene expression, the
hypothetical networks are defined prior to the analysis of the micro-
array data. The goal of this a priori network approach is to allow the
researcher to develop hypotheses about gene sets using prior infor-
mation and then test these hypotheses utilizing the gene networks
and microarray data. For instance, a researcher could hypothesize
that a set of genes are critical for defense against a given pathogen.
The researcher can then use the following methods to identify
pathogen response networks, map eQTL controlling these net-
works, and compare the resulting data to QTL controlling resis-
tance against the pathogen. Alternatively, these same approaches
can be used to directly test if two genotypes that differ in resistance
also differ in the expression of their hypothetical defense network.
The applications of this approach are only limited to a researcher’s
ability to generate hypothesis and conduct the experiment.

3.1. Network

Assignment

The first step required in this method is to generate groups of genes for
which the researcher thinks there is support to presume or hypothesize
that the genes within the group are coordinately regulated. The evi-
dence for gene network assignment can be generated from genes
having coordinate regulation, having a similar biological function or
from numerous existing and developing genomics databases.

3.1.1. Gene Co-expression Numerous plant species have existing databases containing large
collections of microarray analysis which allow for researchers to
identify co-regulated genes. These co-regulated genes can func-
tion as a priori-defined gene networks that can be used for further
analysis. There are two predominant avenues to querying gene
expression databases for co-regulated gene networks, the ‘‘guide-
gene’’ and ‘‘non-targeted’’ approaches (54, 64).

3.1.1.1. ‘‘Guide-Gene’’

Approach to Co-expression

Clustering

The simplest approach to using genomic expression databases for
generating co-regulated gene networks is the ‘‘guide-gene’’
approach (54). The guide-gene approach involves researchers
identifying their favorite gene, inputting it into the available data-
bases, or using their own statistical analysis to identify all other
genes in the genome that show a significant positive correlation
across the available microarray data. This positive correlation sug-
gests that these genes are controlled by the same regulatory net-
work with the same directionality. These genes can then be
classified as a co-regulated network. See Section 3.1.6 for a dis-
cussion of the optimal size of co-regulated gene networks. See
Section 3.1.7 for a discussion of correlation thresholds and the
potential ramification on the network’s utility.
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3.1.1.2. ‘‘Non-targeted’’

Approach to Co-expression

Clustering

A more intensive and global approach to network definition using
co-expression databases is to take the complete data set and com-
pile all gene-to-gene correlations and then utilize this to conduct a
complete clustering of all genes based on their correlation (42, 54,
65, 66). This approach will generate massive interconnected gene
networks that can be utilized to create putative co-regulated gene
networks (66). The genomic network requires dissection into
discrete co-regulated gene networks that can then be handled
individually. This dissection can be accomplished by deciding
upon a correlation threshold required between genes to classify
them as a co-regulated network. See Section 3.1.7 for a discussion
about correlation directionality and thresholds for calling co-regu-
lated genes. An alternative to the hard correlational threshold is to
visually inspect the networks and dissect them based on the density
of clustering. Network diagrams typically are comprised of dense
local gene clusters that are connected to other clusters via sparser
interactions. A researcher could decide that they will dissect clus-
ters based upon the frequency of interconnections within a cluster
versus those between clusters. This would not require a hard
correlational threshold and may yield more biologically relevant
clusters (66).

3.1.2. Metabolic Pathway

Network Definition

A useful method to define coordinated biological function is the
cooperation of enzymes within a biosynthetic pathway. There are
multiple databases containing both validated and predicted meta-
bolic pathways present in Arabidopsis and other plant species (49,
50, 67, 68). As biosynthetic pathways exist to optimally transmute
a beginning substrate to an end product, the genes in a metabolic
pathway are frequently co-regulated (16, 25, 47, 48). As such,
metabolic pathways provide an excellent beginning with which to
predict coordinate gene expression networks. The available data-
bases can be downloaded to generate a ready network list that can
be further modified to the researcher’s specific aims.

3.1.3. Protein Interaction

Network Definition

Modern genomics technologies are providing a diverse array of
data sets to allow gene networks to be defined and then tested.
One such genomics data set allowing gene network prediction is
protein interaction networks (69–71). These interaction networks
predict the presence of protein complexes whose members are
likely to be coordinately regulated to provide a common outcome
(72, 73). There are two forms of protein interaction networks. In
plants, the most common data currently available are for individual
protein complexes (73). Another form of data that is coming is
massive interactome maps attempting to illustrate all possible
protein–protein interactions (69–71). While these interactome
maps are highly complex, they do highlight local protein clusters
that appear to function in protein complexes (72). A researcher
could define the proteins/genes in a local cluster as likely to
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function in a coordinate fashion and as such be a good candidate
for a coordinately regulated gene network. See Section 3.1.6 for a
discussion of the optimal size of co-regulated gene networks.

3.1.4. Other Potential

Biological Definitions

The above approaches to generating hypothetical gene networks
for further testing are not meant to exclude other approaches. In
fact, each approach to a priori network definition inherently limits
and frames both the questions being tested and the answers
obtained. For instance, gene networks defined a priori using meta-
bolic pathways allow a research to test how their experimental
variable X controls gene expression for the biosynthetic pathway.
Similarly, the proteomics definition limits any test to addressing
how the protein complex may be regulated. As such any approach
can be used to define the networks and the specific approach to
network definition should be chosen to maximize the precision
and/or power of the future tests. For instance, if a researcher is
interested in using microarray data to address natural variation in
trichomes, then a network defined by genes exclusively or predo-
minantly expressed in trichomes will be more powerful than a
proteomic or metabolic pathway-defined network. Any data that
can allow a researcher to generate a group of genes logically
expected to be co-regulated is a valid approach to a priori gene
network definition. As the network is simply a tool for hypothesis
testing it does not have to be ‘‘correct’’; future experiments will
test the correctness of the original definition.

3.1.5. Duplicated Genes

and Optimizing Network

Definitions

One complexity of plant genomes is the vast amount of gene
duplication that has occurred (74–77). This can lead to the dupli-
cation of entire gene networks allowing the duplicated networks to
obtain similar but distinct biological functions that may not be co-
regulated. For instance, in maize several tryptophan biosynthetic
genes have been duplicated and recruited for 2,4-dihydroxy-
7-methoxy-1,4-benzoxazin-3-one (DIMBOA) synthesis which is
regulated differently from the tryptophan biosynthetic pathway in
maize (78). If a researcher’s network is defined using protein
interaction or metabolic pathways, it is possible that there are
duplicated copies of this network, each with its own regulation
pattern. As such, the overlapping patterns would diminish the
ability to identify a signal of network co-expression.

A simple approach for researchers to test their network for the
presence of duplicated networks with opposing expression pat-
terns is to obtain microarray measures of gene expression and
conduct a correlational analysis among the genes within a network.
If all members of the network are co-regulated, they will show a
positive correlation. Genes that constitute a separate network will
show no or negative correlation with the other network genes. An
illustration of this principle comes from previous work in Arabi-
dopsis that utilized metabolic pathway definitions to initially define
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networks (25). Correlational analysis within these metabolically
defined networks showed that each metabolic pathway typically
had two different gene networks with opposing gene regulation
(25). For instance, the genes predicted for lignin biosynthesis
could be separated into two complete lignin sub-pathways that
showed a positive correlation within each sub-pathway and nega-
tive correlation between the two sub-pathways. This correlational
separation of duplicated networks should always be used to max-
imize the precision of any network definition before proceeding to
specific network testing as described in Section 3.2.

3.1.6. Number of Genes

in a Network

An important consideration in any network definition is how the
number of genes within a network may affect future tests of that
network. If a network has too few genes, then any statistical test
using that network will be sensitive to variation in individual genes.
This could create or destroy network significance due to error or
variation in an individual gene within the network. Conversely if a
network has too many genes, then these genes are likely integrat-
ing diverse and independent regulatory inputs and any desired
biological specificity may be lost. As such, expression across very
large gene networks may act as a measure of the plant’s physiolo-
gical status complicating the ability to resolve and specific biolo-
gical phenomena (10, 25, 63, 79). Thus, to maximize the
statistical power in terms of error potential and to increase the
precision on the biological questions being asked, networks must
be of a moderate gene membership.

In practice, the minimal gene membership within a network
should be no fewer than five, with ten genes being a more optimal
limit (12, 16, 25). The upper boundary of a network gene popula-
tion is harder to define as this is dependent upon the co-regulation
among members of a gene network. If the network members are
absolutely co-regulated with no other influences separating them,
then the network can be of any size. In practice, an analysis of
eQTL in Arabidopsis showed that gene networks with more than
50 genes typically identified a limited set of eQTL hotspots
whereas gene networks of 25 were more specific (Kliebenstein,
unpublished data). This suggests that somewhere between 25 and
50 is likely the upper bound of the optimal gene network in
Arabidopsis for network expression analysis. However, if the phy-
siological measurements are the desired outcome of any analysis,
then larger networks are valid uses of this a priori network
approach.

3.1.7. Strictness of Network

Definition

It is important for the ensuing network analysis that only those
genes showing a positive correlation are considered as a co-
regulated gene network. Admittedly, many regulatory networks
have both positive and negative consequences on gene expression.
However, the inclusion of negatively regulated genes would cause
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the ‘‘signal’’ from the co-regulated gene network to be diminished
because these genes’ negative changes would erase the positive
regulation in the other genes within the co-regulated network. If
the researcher feels that the negatively regulated genes are of
sufficient interest to merit inclusion the solution is to create a
separate negatively co-regulated network for analysis. If in fact
the two gene networks are controlled by the same regulatory
machinery in different directions, then the two co-regulated gene
networks will identify the same factors in the ensuing experiment
and can strengthen the researcher’s interpretations.

Another important factor in generating gene groups via the
co-expression analysis is the level of correlation between the input
gene and the other genes that is used as the threshold for calling
genes as a co-regulated network. This threshold will impact the
results obtained from any network analysis of these genes. While
there are no absolute thresholds that can be universally applied, in
general the tighter the correlation required to call a group of genes
a co-regulated network, the more likely that they will be regulated
by a single transcriptional network. The lower the correlation
between the genes in the network, the more likely they are regu-
lated by a mixture of transcriptional networks. In this case, the
gene network may actually function as more of a measure of some
specific physiological condition such as drought or general stress
level. Thus, the choice of the correlation level for defining net-
works by the guide-gene approach will likely alter the results from
any network analysis.

3.2. Network Testing

with Natural Variation

Data

The above approaches to defining gene networks provide the
opportunity to test a networks quantitative response to natural
genetic variation. This can be in the form of a network eQTL
analysis which only requires small changes to the standard single
trait methodologies with which most laboratories are familiar.
Below, we present a discussion of approaches to analyze a priori
networks using eQTL analysis.

3.2.1. Network eQTL

Analysis

After previous microarray data from the desired population is
obtained (see Sections 2.1.2.2 and 2.2.2.2) or microarray data
from a new population has been generated and gene networks have
been defined, the next step is to identify eQTLs controlling these a
priori-defined gene networks for which there are two basic
approaches readily available to most labs. These are the average z
score approach and the multi-trait approach as described below.

3.2.1.1. Average z Score

Approach to A Priori

Network eQTL

One approach to map network eQTLs for a priori-defined gene
networks is to use standard software packages such as QTL Carto-
grapher (80, 81). This requires the generation of a single metric
describing the expression of the gene network. In traditional QTL
mapping, a single metric for the trait is measured and entered into
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the QTL algorithm, for example the accumulation of a metabolite.
The development of a single metric for a priori-defined gene
networks is complicated by the genes having widely varying
expression ranges (25). If this difference between genes is not
corrected, variation in any single metric for the network will be
dominated by those genes with higher expression and defeat the
ability of an a priori network to encapsulate the information pro-
vided by all genes within the network. One solution to this com-
plication is to conduct a simple mean centering. In this approach,
the average expression across the different lines for each gene is set
to a preordained value, say 0. The actual value for each gene is
independently normalized by subtracting the measured gene
expression value in that line by that gene’s average expression
measured across all lines. This is similar to the RMA adjustment
for microarrays where the average gene expression per microarray
is set to a constant and the transcript accumulation within each
microarray is normalized accordingly (82). While a simple mean-
centering approach does normalize the means, it does not com-
pensate for genes with large expression ranges also having larger
variances.

Simultaneously compensating for differences in variance and
mean expression requires the use of the z scores for each gene
within the network (25). This requires standardizing the expres-
sion of each gene in each line to its z score. This is accomplished by
first subtracting the expression of each gene in each line by the
average expression of that gene across all lines. This value is then
divided by the standard deviation of that gene’s expression across
all lines. This forces all genes within the network to have an average
expression of 0 and a standard deviation of 1 across all lines. Once
the z score for each gene in each line has been determined, the
average z score across the genes in the a priori gene network is
measured in each line. This provides a single metric or number for
the a priori gene networks expression that can be entered into a
lab’s favorite QTL mapping package to identify network eQTL
using all appropriate significance determinations as would be con-
ducted for any other trait (83–86).

3.2.1.2. Multi-trait

Approach to A Priori

Network eQTL

Multi-trait mapping algorithms provide a second approach to
mapping eQTLs for a priori-defined gene networks. These algo-
rithms were initially developed to test for QTLs across multiple
environments (87–89). In the standard approach to multi-trait
mapping, the same trait is measured in multiple environments
and QTLs are mapped in each environment and across the envir-
onments. The multi-trait algorithms can be adapted to map gene
network QTLs by treating each gene in the network as a separate
measure of the gene network’s response, hence treating each net-
work as a different ‘‘environment’’ measure of the trait (90). The
genes can then be entered into the multi-trait algorithms and
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eQTLs that map across the genes (environments) are the network
eQTL for that specific a priori-defined gene network. An advan-
tage to this approach is that gene-specific eQTLs can be rapidly
identified in the ensuing QTL analysis. Additionally if any genes
obviously behave differently than the other genes in the network in
the multi-trait analysis, they can be dropped from the network and
the eQTL analysis repeated to test if this better refines the a priori
network. This approach can likely be extended into the more
complex Bayesian QTL approaches being developed (90–93).

3.3. Network Testing

of Experimental Data

In addition to allowing for analysis of natural variation in gene
expression networks, the a priori definition approaches also pro-
vide the opportunity to test the network’s quantitative response to
more traditional experimental variation. This experimental varia-
tion could be in the form of environmental or genetic perturbation
of the plant. Further, the a priori network analysis only requires
small changes to the standard single gene methodologies with
which most laboratories are familiar. This approach should be
applicable to network testing of metabolomics data
(see Notes 1 and 2 for brief discussion).

3.3.1. Experimental Design If the a priori network is being used to test existing microarray data
sets for a network’s regulation, then the researcher is limited to
what the existing experiments allow. However, the researcher can
utilize this a priori network approach to test a network’s response
to new experimental variables that were not a factor in the net-
work’s definition (12, 17). In this case, standard experimental
designs should be followed to maximize the statistical power just
as if the researcher was focusing on a single gene rather than a
network. There is some thought that a network analysis may not
require as much replication as an individual gene. However, as the
basis of the a priori network approach is that there is a single
underlying biological mechanism for the gene’s co-regulation, it
is possible that the variation present in this biological mechanism is
similar to the variation identified in a single gene. This is shown by
the lack of increased genetic heritability for the aliphatic glucosi-
nolate network in comparison to the average heritability for the
underlying genes (16). Further, individual genes and the networks
within which they reside appeared to control similar levels of
variation across Arabidopsis accessions, suggesting that gene net-
works and individual genes require similar levels of replication
(25). As such, it is advisable to conduct sufficient replication with
an experimental design meant to control for and minimize error as
much as possible.

3.3.2. Nested ANOVA of

Experimental Variables

One key aspect of the a priori network definition is that it facilitates
the direct testing of gene network responses to experimental per-
turbation. This can be done using any standard experimental
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design meant to query gene expression responses to biotic, abiotic,
or genetic perturbations. For this analysis, the gene networks are
designed as described (Section 3.1), the appropriate experiment
conducted, and data collected. The experiment can be a micro-
array analysis of a wild-type plant versus a mutant, plants grown in
normal versus drought conditions, or a factorial experiment com-
bining different experimental factors. An a priori network analysis
of this data only requires a modification of the traditional ANOVA
that many laboratories already utilize. In this modification, gene
and gene network membership for each gene are both entered into
the statistical analysis as separate variables. The data are then
analyzed as a nested ANVOA whereby gene is nested under the
gene network term (25). For instance, genes A, B, and C are
considered members of network X and genes D, E, and F are
members of network Y. This allows the data for each gene’s
expression data to be used by the model but only within the
specific gene network in which that gene resides. This allows the
model to compare expression variation between genes within a
network to that between specific networks. For example, variation
within the genes A, B, and C for network X is analyzed separately
to the variation for genes D, E, and F in network Y. Finally, the
variation between network X and Y is analyzed. Additionally, a
nested ANOVA can compare the level of variation controlled by
each component of the model. For instance, an analysis of natural
variation in Arabidopsis gene expression suggested that network
variation was on a similar order of individual gene variation (25).
The ANOVA can then be extended to directly test for effects of
different experimental perturbations upon the networks.

An example of this nested ANOVA approach is an analysis of
how modifying three MYB transcription factors within A. thaliana
altered the expression of sulfur utilization networks. In this experi-
ment, WT and the different MYB expression lines were measured
with replicated microarrays. The nested ANOVA tested if the intro-
duction of the MYBs into Arabidopsis predominantly altered indi-
vidual genes or the sulfur utilization networks within which the
genes reside (17). This found a significant effect of the transcription
factors upon the different networks, showing that the MYBs control
distinct sulfur networks (17). The nested ANOVA can be easily
implemented in any statistical package. However for very large
data sets containing numerous genes and networks, the R platform
is likely better due to more efficient matrix inversion algorithms.
Smaller more discrete tests are feasible in any statistical package.

3.4. Conclusions Genomics experiments are sometimes thought of as limited to
generating hypothesis that are then tested by other methodolo-
gies. This leaves a need for developing approaches to allow for
hypothesis testing using genomics-scale experiments. In this
methods description, we relay one approach to using genomics
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data, specifically microarray data, to directly test hypothesis and
map genetic variation for a priori-defined gene networks. This a
priori approach has been mostly used for the analysis of eQTL
controlling gene networks but can be extended to nearly any
experimental approach. The methods described in this chapter
are readily accessible to any laboratory with basic statistical pro-
grams such as Excel, R, SAS, or Systat and do not require any
special programming. As such, these methods should allow any
researcher to being treating gene networks as testable hypothesis
using existing or new microarray data. This should allow for an
increase in specific biological inference to be derived from tran-
scriptomics data and experiments in any species. Finally, the
approaches described here can be adapted to any genomics plat-
form such as metabolomics whereby quantitative measurements of
network members can be conducted and networks can be defined.

4. Notes

1. Applying the a priori network approach to metabolomics
would be feasible to compare the network responses of bio-
synthetic pathways, i.e., TCA cycle, to the responses of the
individual metabolites within the pathway.

2. A caveat to applying any expression analysis approaches to meta-
bolite analysis is that metabolites can be interconverted from one
to another. In contrast, the transcript for one gene cannot be
directly converted into the transcript for another gene. As such,
this difference in the relationship between metabolites and the
relationship between transcripts may generate different variance
properties in the two genomics data sets.
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Chapter 12

Co-expression Analysis of Metabolic Pathways in Plants

Ann Loraine

Abstract

Co-expression analysis allows experimenters to re-use archived expression microarray data to uncover
previously unknown functional relationships between genes. An observation that a group of genes are co-
expressed across diverse experimental conditions suggests they may play similar roles in the cell. Several
thousand expression microarray experiments performed on samples from Arabidopsis thaliana have
entered the public domain and it is now possible to use these data to investigate metabolic networks in
plants. This chapter explains how to use a Web-based tool (CressExpress) to investigate co-expression of
genes involved in metabolic pathways in Arabidopsis. Using CressExpress together with desktop visualiza-
tion and analysis tools, one can easily identify clusters of genes that are co-expressed with one or more
genes of interest, making it possible to identify new players in metabolic pathways that are regulated at the
level of mRNA abundance.

Key words: Expression array, co-expression, relevance networks, correlation, linear regression.

1. Introduction

More so perhaps than any other genomic technology, expression
DNA microarrays have driven a revolution in the conduct of mole-
cular biology. The sheer volume of data even a single well-designed
microarray experiment can produce has stimulated molecular biol-
ogy labs to develop data management and statistical analysis exper-
tise that they can re-deploy in new settings. This chapter will discuss
co-expression analysis as one example of this and will describe how
researchers can take advantage of archived microarray data to study
metabolic pathways, focusing on Arabidopsis thaliana and data
from the ATH1 microarray from Affymetrix to demonstrate what
is possible.
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The ATH1 array from Affymetrix consists of around 500,000
25-bp oligonucleotide probes that are grouped into probe sets,
where each probe set includes 11 perfect match and 11 mismatch
or control probes. All the probes in a probe set are selected from a
200 to 300 base region near the three prime end of a target
transcript, and the probes may or may not overlap, depending on
the transcript. The ATH1 array contains 22,814 probe sets,
including control probe sets useful for assessing sample quality.

One noteworthy aspect of the ATH1 array is that the target
transcript sequences were based on a set of gene model annota-
tions that were partially hand-annotated as part of the Arabidopsis
Genome Initiative (1). Other array designs from Affymetrix, espe-
cially the mammalian arrays, have targeted expressed sequences
harvested from the dbEST, Genbank, and Unigene databases.
Quality issues with EST data, such as the impossibility in many
cases of identifying the transcribed strand, create technical chal-
lenges in probe set design and often result in probe sets that yield
problematic data. This means that, relatively speaking, the ATH1
data may be unusually high quality when compared to data from
other Affymetrix 3-prime arrays. It will be interesting to test this
idea as informatics methods improve and we can more easily access
data in high-throughput fashion.

Another less unusual feature of the ATH1 array is that many
probe sets are promiscuous in the sense that they may hybridize
with target transcripts arising from multiple locations in the gen-
ome. This is reflected in the probe set nomenclature, which uses
suffixes to indicate when a probe set uniquely identifies its target
(suffix ‘‘_at’’) or may recognize targets from multiple genes (suffix
‘‘_x_at’’). However, users of the data should note that these names
were assigned years ago, and the cross-hybridizing probe sets
received their ‘‘x_at’’ designations based on only those sequences
that were provided to the array design pipeline in the initial design
phase. Thus, some probe sets with ‘‘_at’’ designations may cross-
hybridize with other targets that were unknown at the time the
ATH1 array was created. Furthermore, different groups have pro-
duced probe set to target gene annotations, including both Affy-
metrix and The Arabidopsis Information Resource (TAIR), and so
it is important to note that sometimes these annotations disagree.
For this reason, a careful investigator should always keep track of
probe set names during an analysis and should also note which
probe set annotation is being used.

As of early 2008, the Gene Expression Omnibus contained
over 3,000 ATH1 sample (GSM) records, each one corresponding
to one array hybridization (2). The availability of such a large
amount of data in an accessible location makes it tempting to
experiment with meta-analysis methods that compare samples
from completely different experiments. Some care must be taken
in this, however. For example, users should beware of attempting
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to compare expression across samples from different sources, since
any observed differences could be due to the fact that samples
come from different labs, not because of any interesting biological
variation.

However, it is valid to examine how probe set readings vary
across multiple samples and experiments relative to each other, and
this is the crux of why co-expression analysis is a useful technique.
Consider Fig. 12.1, which shows a scatter plot of expression
values for two probe sets from 1,771 ATH1 array hybridizations.
Each point represents a single array; the x and y co-ordinates are
the expression values for the x-axis and y-axis probe sets, respec-
tively. Note that when the y-axis probe set values are high, the
x-axis probe set values are also high, and the reverse is true. There is
a linear relationship between expression values from the two probe
sets, and this relationship is so tight that one can use the value of
one variable to predict the value of the other with relatively good
confidence. Based on this, we can say that the targets for these two
probe sets vary in concert, and this co-variation appears across the
vast majority of arrays represented on the plot throughout the
expression ranges of each probe set.

To quantify the closeness of this relationship, we can compute
a correlation coefficient (Pearson’s r) from the data. Pearson’s r
ranges from –1 to 1, and values closer to zero indicate less associa-
tion, while values closer to 1 or –1 indicate a tighter clustering
about a line. Performing a linear regression of y on x yields a linear
model one might use to predict the value of y given x. In

Fig. 12.1. Positive co-expression between target genes for two ATH1 array probe sets.
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co-expression analysis, we typically use linear regression as a
method for obtaining an r2 value, which is square of Pearson’s r
and expresses the percentage of variation in y that is explained by
variation in x. Higher r2values that are closer to one indicate a
tighter relationships between variables, while the slope of the
regression line (positive or negative) indicates the directionality
of the relationship.

Methods exist for assigning probabilities (p values) to regres-
sions and correlations; in general, plots with more points cluster-
ing more tightly around the regression line yield smaller p values.
For example, consider a pairwise comparison between two genes
that yields an r2 value of 0.75 and a p value of 0.001. This means
that the probability of obtaining an r2 value equal to or greater
than 0.75 purely by chance is 0.001. Stated another way, we expect
that only 1 in 1,000 of randomly created plots would exhibit an r2

as large as what we observe in the data.
If we are interested in comparing only two genes, and only in

performing one such comparison, a p value of 0.001 is very unlikely,
given that we could have chosen any pair of genes. However, for a
large-scale, data-mining experiment in which we are examining the
entire genome, we might compute a linear regression for every
possible pair of probe sets. For the ATH1 array, this means that
we could consider 22,810 choose two distinct probe set plots, over
260 million combinations. At a significance level of 0.001, that
means that under the assumption of random (non-linear) relation-
ships between probe set expression values, we might expect that
around 260,000 comparisons (0.001 � 260 million) would yield
r2 values that appear to be significant at a pre-designated alpha level
of 0.001. In other words, we would expect to obtain 260,000 false
positives, i.e., pairs of genes that appear to be co-expressed but are
not.

We can improve our chance of avoiding such a large number of
false positives by changing our p value threshold for deciding
significance (the alpha level) by lowering it from 0.001 to some
other value. But how much should we lower it? According to the
Bonferroni adjustment, which is one of the most conservative
approaches, we can achieve a 0.001 probability of having no false
positives among all 260 million tests, equivalent to a family-wise
error rate of 0.001, by dividing 0.001 by the number of tests we
perform and using the result as the new alpha threshold for each
test. (The derivation of this calculation is relatively straightforward
and is explained on a number of different Web sites.) For the ATH1
array, this calculation yields 3.8 � 10–12, which may seem like a
ridiculously small number, but, in practice, p values for linear
regressions involving expression data from 200 or more arrays fre-
quently achieve this and smaller p values. Indeed, regressions invol-
ving the plots shown in Fig. 12.2 have p values that are many orders
of magnitude smaller than this Bonferroni-adjusted threshold.
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As of January 2008, the GEO contained results from almost
200,000 individual microarray hybridizations. Clearly, there are
abundant data available for co-expression analysis, and there will
likely be more in the future as more journals make public release
of the data a prerequisite for publication. As a result, these data
are finding a second life as raw material for co-expression
analysis.

GEO makes these data available in formats that make harvest-
ing and mining the data relatively easy. The GEO Web site inter-
face is sometimes confusing and difficult to use, but the ftp site
accompanying GEO is relatively well organized and presents few
problems for computational scientists who need to get the data in
bulk. Other resources that store and distribute plant array data

Fig. 12.2. Positive and negative co-expression between AT1G56145 (predicted protein kinase) and three genes encoding
predicted and known photosystem II components. Probe sets (left to right) interrogating these genes were 251784_at,
245213_at, 259838_at, and 262093_at, according to annotations from TAIR. In general, negative correlation (rightmost
column) is less common than positive correlation.
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include the Nottingham Arabidopsis Stock Center AffyWatch and
NASCArrays service (3) which offers access to Arabidopsis data,
and PlexDB (4), which aims to provide access to the expression
data from 17 species of plants and plant pathogens.

This trend toward greater portability and accessibility of the
data will no doubt accelerate, and the ease of harvesting the data
has already helped many groups recycle the data, using it to popu-
late Web-accessible data-mining tools that re-deploy the data in
new forms for data-mining experiments. But how can individual
laboratories interested in specific pathways or processes utilize
these data in their research? This chapter will demonstrate one
example of how this can work, using the CressExpress tool hosted
at http://www.cressexpress.org, and two flexible and powerful
desktop data analysis programs: R (www.r-project.org) and Table-
View (5). This chapter will describe the use of large-scale co-
expression analysis to characterize a pathway and identify potential
new players in the pathway, which can then be tested in the
laboratory.

2. Methods

2.1. Step 1: Identify

Probe Sets (Array

Elements) That

Interrogate the

Pathway Genes

To demonstrate how this works, we will focus on a single pathway in
secondary metabolism: biosynthesis of indolic glucosinolates from
tryptophan. Glucosinolates are sulfur- and nitrogen-containing com-
pounds that are synthesized from amino acid precursors and are
found in a number of Brassica species, including Arabidopsis (6, 7).
Glucosinolate breakdown products are responsible for the pungent
flavors of horseradish and wasabi mustard, and some have been
studied for their potential to defend against cancer. In the plant,
glucosinolate compounds are believed to play roles in pathogen
resistance, defense against herbivory, and as chemical attractants.
Our goal in this co-expression analysis will be to identify candidate
genes that may be involved in glucosinolate biosynthesis, using the
expression patterns of genes that are already known to be a part of the
pathway.

The first step in the analysis is to identify genes involved in the
pathway of interest and then identify the ATH1 probe sets that
interrogate these genes. To start, we turn to the AraCyc database,
an online database of metabolism in Arabidopsis, available via links
from the TAIR Web site (8). AraCyc reports that the indolic
glucosinolates biosynthesis pathway involves five reactions, cata-
lyzed by six gene products (Table 12.1).

We can use the gene names or their AGI codes to look up the
associated ATH1 probe sets on the TAIR Web site. Figure 12.3A
shows screen captures from the TAIR Web site showing how to
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look up probe sets from the ATH1 array for CYP79B2. First, we
run a search using the search box on the TAIR home page. This
retrieves a list of results, including a locus named for the AGI
(Arabidopsis Genome Initiative) code name for CYP79B2. Click-
ing the locus link opens a locus-level page for CYP79B2, which
reports array elements associated with the gene.

Many genes have multiple probe sets from one or both of two
Affymetrix arrays, including ATH1 and the older AG (Arabidopsis
Genome) array. Usually, the probe set with the longer name is
from ATH1. Clicking a probe set name opens a new page describ-
ing it. To find out if it is on the ATH1 array, click the ‘‘þ’’ icon
next to the text ‘‘See list of array designs.’’

Many probe sets are promiscuous, i.e., they have multiple
targets. It is unclear how using these probe sets will affect results,
and so anyone performing a co-expression analysis should be aware
when a probe set interrogates multiple genes. As of this writing,
TAIR displays the identity of alternative probe set targets in the
space above the page heading ‘‘Array Element.’’ An example is
shown in Fig. 12.3B.

2.2. Step 2: Are They

Co-expressed with

Each Other?

The next step of the analysis will be to determine the extent to
which these six genes are co-expressed with each other. If we learn
that all six exhibit a high degree of co-expression with each other,
we may then be able to use them as a kind of computational bait to
identify other candidate genes that may also play a role in the
biosynthesis of glucosinolates from tryptophan.

To determine whether the genes are co-expressed with each
other, we will use R, a freely available, open source tool for statis-
tical analysis, together with a simple Web service that delivers

Table 12.1
Glucosinolate biosynthesis from tryptophan. Gene symbols, probe set to gene
target annotations, and annotations are from TAIR and AraCyc version 3.5

AGI code Gene symbol
Probe set
(ATH1) Enzyme

At2g22330 CYP79B3 264052_at Cytochrome p450

At4g39950 CYP79B2 252827_at Cytochrome p450

At4g31500 CYP83B1, ATR4, RED1, RNT1, SUR2 253534_at Cytochrome p450

At2g20610 SUR1, ALF1, HLS3, RTY, RTY1,
SUPERROOT 1

263714_at Transaminase
activity

At1g24100 UGT74B1 264873_at UDP-glucosyl
transferase

At1g74100 F2P9.3, F2P9_3 260387_at Sulfotransferase
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expression data in simple tabular or comma-delimited formats.
(To find out more about R, visit the R project home page at
http://www.r-project.org.) We will use R to access expression
values for the six glucosinolate probe sets, compute Pearson’s
correlation coefficient for each pair of genes, and display a scatter
plot similar to Fig. 12.2.

First, we launch a program called the R interpreter, a program
into which we type commands to read files, manipulate data, per-
form statistical tests, etc. Note that commands that are typed into
the interpreter can also be typed into and then saved in plain text
file and then run in the R interpreter by typing the source com-
mand and the name of the file. This capability is why R is consid-
ered to be both a programming language one can use to write
scripts (commands that should be performed in a sequence) and an

1. search box on home page (top right)

2. results page

3. locus page

4. click to expand

A.

B. Two additional gene 
targets.

Fig. 12.3. Flowchart illustrating how to use TAIR to find probe sets that uniquely recognize a target gene. A. Looking up the
ATH1 probe set for CYP79B3. B. Where to look on a probe set page to find out if a probe set interrogates multiple target
genes.
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interactive tool for analyzing data. In practice, most people use R
in both ways, since it is often convenient to re-use a sequence of
analysis steps many times. Note however that if you want to write
scripts for R to run again and again, you must save them in plain
text formats. R cannot read Word documents or any other file that
is not a plain text (e.g., a ‘‘.txt’’) file.

Figure 12.4 shows the commands typed into the interpreter
as part of an R session, along with output from each command.
Commands typed into the R interpreter appear next to the R

R is a collaborative project with many contributors. 
… 
Type 'q()' to quit R. 

> base = "http://www.cressexpress.org/cgi-bin/getExpVals.py" 
> probesets = c('264052_at','252827_at','253534_at','263714_at','264873_a
+   '260387_at') 
> pss = paste(probesets,collapse=',') 
> url = paste(c(base,'?version=3_0&file-
format=comma&pss=',pss),sep='',collapse='') 
> url 
[1] "http://obiwan.ssg.uab.edu:8080/coexpression/cgi-
bin/getExpVals.py?version=3_0&file-
format=comma&pss=264052_at,252827_at,253534_at,263714_at,264873_at,260387
> dat = read.delim(url,sep=',',header=TRUE)  
> dim(dat) 
[1] 1771   11 
> heads = c('cel','CYP79B3','CYP79B2','CYP83B1','SUR1','UGT74B1','At1g741
+   'exp','slide','ks','url') 
> names(dat)=heads 
> cor(dat[,2:7]) 
            CYP79B3   CYP79B2   CYP83B1      SUR1   UGT74B1 At1g74100 
CYP79B3   1.0000000 0.8429500 0.7924926 0.6376598 0.6604806 0.7220173 
CYP79B2   0.8429500 1.0000000 0.7970052 0.6100147 0.6322989 0.7642592 
CYP83B1   0.7924926 0.7970052 1.0000000 0.7764918 0.7659748 0.8430911 
SUR1      0.6376598 0.6100147 0.7764918 1.0000000 0.8319885 0.7611434 
UGT74B1   0.6604806 0.6322989 0.7659748 0.8319885 1.0000000 0.7814670 
At1g74100 0.7220173 0.7642592 0.8430911 0.7611434 0.7814670 1.0000000 
> plot(dat[,2:7]) 
> model = lm(dat$CYP79B2~dat$SUR1) 
> summary(model) 
Call: 
lm(formula = dat$CYP79B2 ~ dat$SUR1) 

Residuals: 
     Min       1Q   Median       3Q      Max  
-3.64168 -0.84895 -0.04724  0.78613  4.18958  

Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -0.14554    0.29850  -0.488    0.626     
dat$SUR1     0.94919    0.02931  32.379   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 1.144 on 1769 degrees of freedom 
Multiple R-Squared: 0.3721, Adjusted R-squared: 0.3718  
F-statistic:  1048 on 1 and 1769 DF,  p-value: < 2.2e-16

Fig. 12.4. A sample session with the R interpreter.
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prompt (>>>) and outputs appear on the next lines. First, we
define a variable (url) that represents a Web address for data
associated with the six probe sets listed in Table 12.1. The URL
has several parameters, or components, that specify the data we
want to retrieve. The first parameter (version) specifies the data
release version. More information about specific data releases can
be found on the CressExpress Web site in the FAQ section. In this
case, release 3_0 corresponds to version 3.0, which includes
around 1,770 arrays that were processed using the RMA algo-
rithm. The second URL parameter (file-format) specifies how the
data should be formatted. In this case, we request that commas be
used as a field separator. The last parameter (pss) gives a comma-
separated list of probe sets whose expression data we would like to
retrieve. This list can include 1–50 probe set names, but requesting
larger numbers of probe sets will result in slower response time.
Note that every parameter except the first one must be proceeded
by an ‘‘&’’ character, and all parameters must be followed by an
‘‘=’’ sign and then the requested value.

To see how the data are formatted, and to save it to a local
file, you can enter the URL in a Web browser’s Navigation
Toolbar and then save the resulting ‘‘page’’ as a plain text file.
You should then be able to open it in Excel or any other program
that can read tabular data (see Fig. 12.5). Depending on the
browser, you may need to experiment with the ‘‘save as’’ options
to get the data into the proper format. (In Firefox, use the ‘‘All
Files’’ option.)

Within the R interpreter, we retrieve the data from the Web
service using the read.delim command and store the output to a
variable called dat, which is an R object called a data frame. We can
then pass dat to various functions that use the data stored in dat to
compute correlations, regressions, make plots of the data, and
many other possibilities. Note that to find out more information
about any given function, you can type help(cmd) where cmd is
the name of the function.

Fig. 12.5. Expression data from the CressExpress Direct Access Web service. Columns B
and C contain RMA-processed data for two probe sets that interrogate glucosinolate
pathway genes.
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The read.delim command can access data either from a local file
or a URL Web address, and it can accept several options that modify
how it reads the data. The sep=‘,’ option indicates that the field
delimiter for the incoming data is a comma character, and the head-
er=TRUE option indicates that the first row of the data contains
column titles. Once we have retrieved the data, we can change the
column headings to gene names using the names command to make
it easier to reference columns we want. To compute pairwise correla-
tions, we use cor, and pass it a part of the data set that contains the
expression values (dat[,4:7]) corresponding to columns 4 through 7.
To view a multi-scatter plot similar to Fig. 12.3, we use the com-
mand plot and again pass it columns 4 through 7. To compute a
linear regression (saved as variable model), we use the lm (linear
model) command and then pass it to summary as shown. In this case,
we find that the p value associated with comparing CYP79B3 with
CYP79B2 is less than 10–16, a significant result.

2.3. Finding Other

Genes That Are

Co-expressed

It is clear that the six genes are highly co-expressed with each
other, which suggests that co-expression analysis may be able to
help us find other genes that play a role in the pathway or in related
pathways. The CressExpress tool will allow us to select specific
experiment we would like to include in a co-expression analysis,
and so before we get started, we might want to identify experi-
ments where the six genes’ expression levels are relatively high.
Although the genes appear to be highly co-expressed throughout
their range, it is possible that other genes that play a role in the
pathway exhibit co-expression with the ‘‘bait’’ pathway genes only
in high-expression situations. We could use R to identify these
experiments using R commands like subset or sort; however, for
the purposes of this chapter, we will demonstrate how to do this
using a different tool: TableView.

TableView is data exploration and analysis tool that is freely
available and open source, developed originally at the University of
Minnesota (5). It has a number of useful visualizations and func-
tions, but here we will focus on just one function: its ability to
display interactive, clickable scatter plots. To launch TableView,
visit the Web site at http://igb.bioviz.org/links.shtml and follow
the links that lead to a JavaWebStart page (file extension JNLP)
that, once loaded, will trigger download and launch of the applica-
tion. For more information about Java Web Start and launching
TableView, see the CressExpress tutorial on using TableView to
visualize expression data available under the ‘‘Visualization’’ tab
accessible from the CressExpress home page.

To identify experiments and conditions where the six indolic
glucosinolates biosynthesis genes are highly expressed, we launch
TableView and select the Load Table option under the File menu,
which opens a second window where we enter the same data direct
access URL as before (see Fig. 12.6). Once the data appear in the

Co-expression Analysis of Metabolic Pathways in Plants 257



second window, we click the ‘‘Load’’ button to load the data as a
new table into TableView. Note that in the example (Fig. 12.6),
we have named the table ‘‘Glucosinolate Biosynthesis From Tryp-
tophan’’ for convenience.

Once the data are loaded as a new table data set, we can select
it in the main window and display it using the viewing options
represented by the buttons at the top of the display (Fig. 12.7).
If we click the Table icon, TableView will show a spreadsheet view
of the data. To make working with the data more convenient, we
first click the column heading for the ‘‘exp’’ column to sort and
group the arrays based on their experimental affiliation (these
numbers are assigned by NASCArrays). Doing this causes the
spreadsheet to display all arrays from the same lab and same
experiment in consecutive rows, which will be useful later when
we view scatter plots between probe set expression values. Next,
we click the multi-scatter plot icon and then select individual cells
within the display to view pairwise scatter plots between probe set
pairs. To select the arrays with larger values, we can click-drag
over the upper right quadrant of a plot. Note that doing this
causes the corresponding rows in the spreadsheet view to be
selected. Also, if we click another cell in the multi-scatter plot

Fig. 12.6. Retrieving expression values from the CressExpress Direct Access Web service using TableView. The
URL used to retrieve these data was http://www.cressexpress.org/cgi-bin/getExpVals.py?version=3_0&file-
format=tab&pss=264052_at,252827_at,253534_at,263714_at,264873_at,260387_at.
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A

B

Fig. 12.7. Using TableView to identify arrays where glucosinolate probe sets indicate high expression values.
(A) Multiple scatter plots (B) Interactive scatter plots and tabular view.
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view and open another scatter plot between a different pair of
probe sets, points corresponding to the same selected rows will
also be highlighted.

We can then copy the selected rows into a new spreadsheet
program (e.g., Excel) or just scroll up and down to find the
experiments for which a majority of arrays appear in the high
range for both probes sets. (These are easy to spot as blocks of
contiguous, highlighted rows. For the glucosinolates, experiments
with id numbers 337, 335, 330, 319, 192,191, 190, 188, 187,
186, 185, 180, 181, 179, 177, 171, 169, 168, 167, 166, 162,
155, 151, 150, 149, 147, 145, 144, 143, 142, 141, 140, 139,
137, 136, 132, 124, 123, 120, 103, 81, 79, 71, 60, 53, 46, and 26
have a majority of arrays with high-expression values.) To find out
the tissue types and conditions associated with these samples, we
can cut and paste the Web addresses (from the column labeled
‘‘url’’) into a Web browser and read the description of the experi-
ment at the Nottingham Arabidopsis Stock Center Web site.

2.4. CressExpress

Pathway-Level

Co-expression

Now that we know which experiments contain samples that yield
relatively high expression values for the six glucosinolate biosynthesis
genes, we will use the CressExpress Web tool to query these same
experiments and identify additional genes that are highly co-expressed
with all six genes (see Fig. 12.8). This will give us some clues as to
what other genes may be involved in pathway function and regulation.

Fig. 12.8. Using CressExpress to identify genes that are co-expressed with glucosinolate biosynthesis pathway genes.
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However, it is important to note that sub-selecting these
experiments may not necessarily improve the results in every
case. Our goal here is to assemble a good list of candidate genes
that may play a role in glucosinolate function and/or biosynthesis,
and we hope that sub-selecting based on high expression may help
identify co-expression relationships that would otherwise be
obscured by a higher degree of variation in the lower ranges of
expression. To test whether sub-selecting based on expression
level really does improve co-expression for this pathway, we
would need to perform some additional analyses. For example,
using R, we could re-calculate correlation using just the expression
data from the higher ranges, using data both from the glucosino-
late query genes and genes identified from a whole-genome co-
expression analysis, which will identify using the CressExpress
pathway-level co-expression analysis described below.

To perform the whole-genome co-expression analysis, we visit
the CressExpress Web site (http://www.cressexpress.org) and
click the link labeled ‘‘Run the Tool.’’ We then step through a
series of screens in which we set up and run the whole-genome co-
expression analysis. Using CressExpress, we will perform linear
regression between the six glucosinolate biosynthesis genes and
all other genes represented on the ATH1 microarray using data
from experiments we identified in TableView. Note that it would
be difficult, if not impossible, to perform an analysis involving all
22,000 ATH1 probe sets using the desktop tools described thus
far. The CressExpress Web site serves as an interface to a more
powerful system that performs the same types of calculations as we
did using R but on a much grander scale.

To start, we choose a data release (Step One), enter the AGI
codes for the six genes (Step Two), and select the ATH1 array as
the data source (Step Two). The next screen (Step Three) presents
a listing of available tissues; here, we accept ‘‘All,’’ which is the
default option. Then, in Step Four, we check the experiments
whose ids we identified using TableView.

The next screen (Step Five) allows us to set up a pathway-
level co-expression (PLC) experiment. This part of the analysis
will search the genome for genes that are co-expressed with two
or more of the six query genes we entered in Step One, where two
genes are considered to be co-expressed when their pairwise
linear regression r2 value is equal to or exceeds the designated
threshold. In this case, we enter an r2 threshold of 0.25, corre-
sponding to a Pearson’s correlation coefficient of 0.5. This means
that genes that are co-expressed with two or more of the query
genes with r2 value of 0.25 or better will be reported. Next (Step
Six), we enter an email address and launch the analysis. (For
additional details on how PLC works, readers should consult a
paper describing pathway-level co-expression analysis of meta-
bolic pathways described in the AraCyc database (9).)
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CressExpress runs a whole-genome co-expression analysis that
compares the query genes’ probe sets to all the other probe sets on
the ATH1 array using arrays from the experiments designated in
Step Four. Once the analysis completes, CressExpress sends an
email message to the address entered in Step Six. The email con-
tains a link to a compressed package of results files (a ‘‘zip’’ file)
stored on the CressExpress site. Once we download and unpack
the file, we can use a Web browser to view a results file named
PLCResults.html that lists all genes that were co-expressed with
two or more of the original query genes.

Figure 12.9 presents a screen capture of the PLC results Web
page showing several genes that are co-expressed with glucosino-
late queries. (In this case, we used r2 threshold of 0.35.) The Web
page presents a table that lists the co-expressed genes (and their
probe sets) in the first column, together with Gene Ontology
annotations describing their known or predicted functions. Each
gene name links to the corresponding locus page at TAIR, and the
probe set names link to a page at Affymetrix’ NetAffx Web site
(10). The next column in the table lists the query genes with which
they were co-expressed and their pairwise r2 values.

In this analysis, we find that genes annotated with functions
related to tryptophan biosynthesis (e.g., ASA1 encoding anthra-
nilate synthase beta subunit) appear high on the list, along with
genes of unknown function. At this point, we have reached the
limit of what this particular co-expression analysis tool can do; the
next step, clearly, would be to identify T-DNA or other mutant
lines that contain lesions in these genes and then test their effects
on glucosinolate biosynthesis, pathogen defense, and/or other

PLC Results Web page

Fig. 12.9. Genes co-expressed with the indole glucosinolate pathway in Arabidopsis.

262 Loraine



related phenotypes. By following the links in the PLC Results Web
pages, we can easily identify publicly available seeds stocks believed
to contain lesions in these top-ranked co-expressed genes, order
the lines, and then test them for glucosinolate-related phenotypes.

3. Conclusion

This chapter provides an introduction to computational methods
one can use to identify candidate players in metabolic pathways,
assuming that genes that play related roles in the cell require some
form of coordinate regulation. If this regulation is carried out at
the level of mRNA abundance, then it is very likely that expression
microarrays can detect it and that these relationships will be evi-
dent in the vast storehouses of expression microarray data cur-
rently available in the public domain. In this chapter, we explain
one of the most straightforward and accessible approaches to
identify co-expression: linear regression and correlation. However,
it should be noted that methods used to combine expression data
from many sources are still being developed, and experimental
biologists need ways to incorporate these methods into their
research workflow. This chapter aims to provide a roadmap for
how this can work using freely available tools that have uses in
many settings far beyond what is presented here.
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Chapter 13

Integration of Metabolic Reactions and Gene Regulation

Chen-Hsiang Yeang

Abstract

Metabolic reactions and gene regulation are two primary processes of cells. In response to environmental
changes cells often adjust the regulatory programs and shift the metabolic states. An integrative investiga-
tion and modeling of these two processes would improve our understanding of the cellular systems and
may generate substantial impacts in medicine, agriculture, environmental protection, and energy. We
review the studies of the various aspects of the crosstalk between metabolic reactions and gene regulation,
including models, empirical evidence, and available databases.

Key words: Gene regulation, metabolic reactions.

1. Introduction

Metabolic reactions and gene regulation are two essential and
tightly coupled processes of life. On the one hand metabolism
serves the chemical functions of living organisms such as produ-
cing energy, synthesizing elementary materials, and removing
toxic wastes. On the other hand gene regulation serves the con-
trolling function by modulating RNA and protein syntheses. Since
both processes are essential and fundamental to all the living
organisms, their order of appearance has been a contentious issue
in evolutionary biology (e.g., (1, 2)). Regardless of their origins,
the two processes have become inseparable. In response to envir-
onmental changes cells often adjust regulatory programs and shift
metabolic states. The shifts of metabolic states result from the
regulation of enzyme gene expression and activities. Conversely,
gene expression is often modulated directly or indirectly by
metabolites.

Dmitry A. Belostotsky (ed.), Plant Systems Biology, vol. 553
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Decades of studies have accumulated a large amount of knowl-
edge and data regarding metabolism, gene regulation, and their
crosstalk. This chapter reviews some recent modeling work,
empirical evidence, databases, and data sets regarding the crosstalk
between the two processes. While the studies of the crosstalk of
metabolism and gene expression in plant systems are only begin-
ning (please see the chapter by Loraine and colleagues in this
volume), we will focus here for the most part on unicellular organ-
isms such as Escherichia coli and Saccharomyces cerevisiae because of
much more extensive availability of data and lower complexity of
the processes in such systems. However, the same general princi-
ples should be applicable to plants as well.

1.1. Effects of Gene

Regulation on

Metabolic Reactions

As an essential aspect of life, all species invest substantial amount
of genomic resources on metabolism. About half of the genes in
E. coli and S. cerevisiae serve metabolic functions. Naturally the
regulation of those genes modulates the metabolic reactions. In-
dividual genes regulating the enzymes and transporters of
some metabolic processes have been identified. Moreover,
certain principles pertaining to the evolution of metabolic
states have also been proposed and experimentally validated.
These genes and models provide the information about the
effects of gene regulation on metabolic reactions at both local
and global levels.

1.2. General

Theoretical

Considerations

of Determination

and Measurements

of Metabolic Fluxes

The activity of a metabolic reaction is characterized by its
metabolic flux. The flux of a metabolic reaction denotes the
rate of production or consumption of its substrates. The law of
mass conservation requires that the net production or con-
sumption rate of a metabolite equals to fluxes producing
the metabolite minus the fluxes consuming it. In a matrix
representation,

dx

dt
¼ Av ½1�

where dx
dt denotes a vector of production or consumption rates of

all metabolites, v is a vector of metabolic fluxes, and A is the matrix
of stoichiometric coefficients of all reactions. Each row of A
denotes the balance equation of a metabolite. In a steady state,
dx
dt ¼ 0. Hence any feasible set of metabolic fluxes must satisfy the

balance equations:
Av ¼ 0: ½2�

In a metabolic network, a metabolite often participates in multi-
ple reactions. Hence, the number of reactions typically exceeds the
number of metabolites, and equation [2] is underdetermined.
Additional constraints are therefore needed in order to uniquely
determine the metabolic fluxes in a cell.
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Flux balance analysis (FBA, (3–5)) tackles this problem by
imposing a specific set of constraints. The lower and upper bounds
of each flux can be specified by the thermodynamic properties of
the reaction and the physiological conditions of the cell:

�i � vi � �i ½3�

where �i and �i denote the lower and upper bounds of flux vi.
Furthermore, FBA assumes that the cell adjusts the metabolic
fluxes within the physical constraints in order to optimize the
growth. The growth rate of biomass is a linear function of meta-
bolic fluxes based on biomass composition (6):

r ¼ gT � v: ½4�
The growth optimization assumption yields a unique set of

metabolic fluxes. The optimal �̂ should maximize equation [4],
subject to the constraints of equations [2] and [3]. This is a
standard linear programming problem and can be solved by
many mathematical tools (e.g., (7, 8)).

Flux balance analysis is a simple yet powerful tool for predict-
ing metabolic fluxes. The measured fluxes of wild-type E. coli
strains were shown to match the FBA predictions (9). However,
the limitation of FBA is the requirement for growth optimality. In
a real physiological system, there may exist many suboptimal flux
modes that help the organism to adapt to specific environmental
conditions. This idea leads to an alternative formulation of the flux
balance equations – the elementary mode analysis (10–12).When
the metabolic fluxes do not have to maximize the growth objective
function (equation [4]), valid solutions of equations [2] and [3]
constitute a convex set C. Each element in C can be expressed as a
linear combination of multiple basis vectors:

C ¼ vjv ¼
Xk

i¼1

wipi;wi � 0

( )

: ½5�

Each pi is a vector of metabolic fluxes for each reaction. A set of
pi vectors consist of what is defined as elementary modes if none of
them is a linear combination of others (i.e., they are linearly
independent).

An elementary mode can be viewed as a collection of metabolic
reactions. The linear independence of two modes suggests the two
sets of reactions are not coupled. In real metabolic networks, an
elementary mode often corresponds to a biologically meaningful
pathway. For instance, the elementary modes of the carbon meta-
bolism and amino acid synthesis include such pathways as the TCA
cycle, glyoxylate shunt, and glutamate synthesis (10).

Elementary modes represent all physiologically viable fluxes
including the optimal flux sets. They are hence applicable to a
wider range of problems. For example, E. coil knockout mutants
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destroying all elementary modes were shown to be lethal, and
the growth efficiency of fluxes averaged over elementary modes
was correlated with the expression levels of the corresponding
enzymes (12).

Measuring the flux of a given metabolic reaction directly is
challenging, since its reactants often participate in other metabolic
reactions in the cell. Instead, chemists often choose to label the key
substrates/metabolites with stable isotopes, such as the commonly
used C13 and observe the distribution of the tagged atoms in the
cell (13). Mass spectrometry or nuclear magnetic resonance
(NMR) can be used to monitor the distribution of the isotopically
labeled compounds, and the production or consumption rates of
certain metabolites can be delineated from the resulting spectra.
This information adds more constraints to the flux balance equa-
tions, and the fluxes of certain reactions can be inferred with such
additional constraints.

Current data sets of metabolic fluxes are concentrated on
microbes such as E. coli (e.g., (14–16)) and S. cerevisiae (e.g.,
(17–19)). Most data sets probe the well-known glucose metabo-
lism network (glycolysis, TCA cycle, pentose phosphorylation).

1.3. Gene Regulation

Constraints on

Metabolic Fluxes

Gene regulation can modulate metabolic reactions by changing
the levels of enzymes. An immediate extension of FBA is to
incorporate the expression levels of metabolic enzymes as addi-
tional constraints on metabolic fluxes (20, 21). The fluxes of
reactions catalyzed by enzymes with low expression levels are
set to 0, while an up-regulated enzyme does not exert additional
constraints. However, the effects of gene levels and regulation on
metabolic fluxes are much subtler than the simple binary switch.
Metabolic fluxes are tightly regulated in order to maintain home-
ostasis of organisms. Alterations of external or internal condi-
tions often induce only minor changes of metabolism. For
instance, Ishii et al. found that the metabolite levels of E. coli
are robust against disruptions of enzymes in the central carbon
metabolism (22).

The robustness of metabolic fluxes is partially attributed to the
redundancy of enzymes (as well as to the fact that they are often
but not always synthesized in excess of what is minimally required
for optimal function, H Kacser and JA Burns, Genetics
97:639–666, 1981). Moreover, many reactions can be catalyzed
by multiple isozymes (23). These isozymes often function under
different metabolic conditions or, in multicellular organisms, in
different tissues or cell types. The effect of deleting one enzyme
can often be rescued by its complementary isozymes. In addition
to redundancy, the cells also demonstrate robustness at a global
level. For example, measurements of metabolic fluxes in E. coli
knockout strains demonstrate substantial deviations from FBA
predictions of the knockout strains, where the fluxes of the
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reactions catalyzed by the perturbed enzymes are set to zero. Instead
of rearranging many fluxes to optimize growth under the new
constraints, cells tend to adopt a minimum adjustment from the
wild type. Segre et al. introduced an algorithm that performs a
minimization of metabolic adjustment (MOMA) upon gene dele-
tion (24, 25). Instead of the linear objective function in FBA (equa-
tion [4]), MOMA minimizes the square of the distance (or squared
distance) between the unperturbed flux vw and the new flux v:

r ¼ ðv � vwÞT ðv � vwÞ: ½6�

The constraints are the linear equalities/inequalities in FBA
(equations [2] and [3]) plus the zero constraints on perturbed
fluxes. Minimization of the quadratic objective function (equation
6) with the linear constraint functions (equations 2 and 3) can be
solved by many mathematical tools (e.g., see 26).Predictions from
MOMA fit the empirical flux measurements of knockout strains
more closely than FBA (24).

The results of MOMA indicate the inertia of cells against
changes. The gene expression and other regulatory apparatus in
wild-type strains have evolved over millions of years of evolution to
fit the growth conditions that are most often found in nature. The
perturbed system is hence unlikely to shift quickly to the new
optimal state. For unicellular organisms, readjustment of meta-
bolic fluxes to optimum may be achieved only through evolution.
Indeed, the empirical evidence indicates that cells reach the growth
optimum predicted by FBA after certain number of generations of
evolution (27).

Regulation of enzyme activities adds an additional layer of
complexity to the regulation of metabolism. Metabolites can mod-
ulate the catalytic efficiencies of enzymes by binding to proteins’
allosteric (i.e., regulatory, non-active) sites (23). For instance, in
glycolysis the conversion of fructose-6-phosphate into fructose-
1,6-bisphosphate (EC\# 2.7.1.11) is inhibited by phosphoenol-
pyruvate, downstream of reaction 2.7.1.11 (28), and the conver-
sion of phosphoenolpyruvate into pyruvate (EC\# 2.7.1.40) is
activated by fructose-1,6-biphosphate, upstream of reaction
2.7.1.40 (29). Without requiring the expression changes of
enzymes, this feedback control allows the pathways to quickly
respond to metabolic conditions.

1.4. General Principles

Governing the Global

Distribution

of Metabolic Fluxes

The global distribution of metabolic fluxes is the product of a
complex control system that underwent many millions of years of
evolution. It is tuned to optimize the fitness of the organisms in
their specific environmental niches. However, the definition of
fitness is sometimes elusive and must be considered in the context
of a need to balance several contradictory goals. Here we discuss
two important factors that shape the metabolic flux distribution.

Integration of Metabolic Reactions and Gene Regulation 269



l Growth optimality. Accumulating biomass with efficiency is
one of the major functions of metabolism. It is thus reason-
able to assume that metabolic fluxes are globally distributed
to maximize growth. Flux balance analysis derived from the
growth optimality criterion already successfully fits the flux
data of wild-type bacterial strains (9, 27). The poor fit of
FBA on knockout strains (24) further supports the optim-
ality criterion in evolution, since the expressions and func-
tions of genes are tuned to optimize growth in a specific
environment, and the loss of certain genes often deviates the
cells from the optimal configuration. Furthermore, results of
artificial evolution indicate that a strong selective pressure
and fast mutation rates of bacteria can force the knockout
strains to rapidly evolve toward achieving the new optimal
condition (27, 30).

l Robustness. Robustness of metabolic fluxes is essential for
homeostasis. Alterations of fluxes may accumulate or deplete
certain metabolites and generate toxic effects. Robustness of
metabolic fluxes can be achieved by redundancy and a tight
feedback control. Many reactions are catalyzed by multiple
isozymes. In addition, redundancy also exists at the pathways
level, because the synthesis or degradation of the key metabo-
lites and the production of energy can often be achieved by
multiple pathways. For instance, both glycolysis and pentose
phosphate pathways convert glucose-6-phosphate into glycer-
aldehyde-3-phosphate. Moreover, the enzyme kinetics as well
as the expression of the respective genes encoding them are
controlled by multiple feedback loops. In many metabolic
pathways, the enzymes that catalyze the upstream reactions
are down-regulated by the products of the downstream reac-
tions, and conversely, the enzymes responsible for the down-
stream reactions are positively regulated by the products of the
upstream reactions (e.g., (28, 29)). In addition, the expression
of enzymes is also directly or indirectly regulated by metabo-
lites (see the next section).
The balance between growth efficiency and robustness may

not only govern the distribution of metabolic flux modes but
also influence the network topology of metabolic reactions. The
connectivity of metabolic networks, similar to other biological
networks, follows a power law distribution (31). There exists a
small number of ‘‘key metabolites’’ that appear in many reactions,
while most metabolites appear in only one or a few reactions. The
power law distribution allows an efficient allocation of metabolic
resources, as the cells can concentrate protein synthesis on the
enzymes for the ‘‘hub’’ reactions. It is also robust against random
removal of nodes (metabolites) or edges (reactions) in the net-
work, since most nodes have low connectivity (31). However, it is
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also fragile in the same way that the Internet is vulnerable to
removal of the hubs in the network (31, 32). Whether the power
law distribution of the metabolic network is an evolutionary con-
sequence of the selection for efficiency and robustness or the
product of other mutational processes is still under debate.

1.5. Key Regulators of

Metabolic Enzymes

In addition to the global properties of the regulation of metabolic
fluxes, the key regulators of many metabolic enzymes in different
organisms have been identified. Here we give a brief overview of
several well-understood examples of regulators of the major meta-
bolic pathways.

ArcA and ArcB form a two-component regulatory system for
respiratory control in E. coli (33). ArcB is a membrane-bound sensor
kinase and ArcA is the cognate response regulator. Under the con-
ditions of oxygen deficiency, ArcB phosphorylates ArcA, which then
represses the expression of many enzymes involved in aerobic
respiration. Some of the enzymes thus regulated include those that
catalyze the TCA cycle and the glyoxylate shunt, such as gltA,
acnAB, icdA, sucABCD, sdhCDAB, fumA, mdh, and aceB (33–40).

CRP is a transcriptional dual regulator in E. coli (41). CRP
binds to the promoters of operons involved in glucose metabo-
lism, lactose metabolism, electron transfer, and many others
(42, 43). The CRP–cAMP complex is the best characterized
system for catabolite repression of bacteria (41). The dimeric
CRP–cAMP complex binds to promoters and activates transcrip-
tion. Exogenous glucose both inhibits cAMP synthesis and stimulates
the efflux of cAMP from cytoplasm (44), which therefore reduces the
CRP–cAMP complex levels and causes glucose repression.

Another global regulator for carbon metabolism of bacteria is
Cra (FurR) (41). Cra represses some enzymes in the central carbon
pathway such as pfkA, pykF, zwf, and edd-eda and activates others
such as ppsA, fbp, pckA, icd, aceA, and aceB (45). Experiments on
Cra knockout strains of E. coli indicate that Cra activates gluco-
genesis, while represses the catabolic pathways of glucose such as
glycolysis (40, 45).

In addition to global regulators such as CRP and Cra, the
pathways of E. coli amino acid synthesis are also regulated by the
amino acid-specific regulators. For instance, the operon of genes
leuA-D in leucine biosynthesis is regulated by the LeuO tran-
scription activator (46). Various genes involved in methionine
synthesis are regulated by MetJ transcriptional repressor (47). Genes
involved in the biosynthesis and transport of aromatic amino acids
are controlled by TyrR transcriptional dual regulator (48).

Many transcription factors in the budding yeast S. cerevisiae are
known to regulate genes involved in metabolism. Gal4 and Gal80
constitute the well-studied antagonistic pair of factors that regulate
the genes of galactose metabolism. Gal4 binds to the promoters of
enzymes and transporters of galactose utilization and activates their
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expression. When galactose is deficient, the repressor Gal80p binds
to Gal4p and inhibits its interaction with the general transcription
apparatus, hence repressing the transcription of galactose metabo-
lism genes. When galactose is plentiful, Gal80 disassociates from
Gal4p and those genes are activated (49, 50).

In yeast, Gcn4p is a master transcription factor controlling the
genes that are involved in the synthesis of amino acids. Upon amino
acid starvation, Gcn4p activates many genes involved in amino acid
synthesis (51). Large-scale chromatin immunoprecipitation (ChIP-
Chip) assays also indicate that the promoters interacting with Gcn4p
are enriched for the amino acid synthesis genes (52). In addition to
Gcn4p, enzymes of different amino acid synthesis pathways are also
activated by different transcription factors. Examples include Bas1
for histidine and arginine synthesis (53), Leu3 for leucine synthesis
(54), and Cbf1 for methionine synthesis (55).

2. Effects of
Metabolic
Reactions on Gene
Regulation Changes of external or internal metabolic conditions often induce

pronounced changes in the expression of a large number of genes.
Combined with the regulation of the enzyme activity, gene expres-
sion responses are necessary to maintain cellular homeostasis
under different metabolic conditions. With the recent progress of
high-throughput assays, many genome-wide expression data sets
for various metabolic conditions and organisms have become
accessible. The mechanisms of some of these gene regulatory
effects have been studied in detail. Furthermore, certain patterns
relating the regulation of metabolic enzymes and their positions in
the metabolic network have now emerged. These global and local
information data sets provide the basis for further inquiry into the
effects of metabolic reactions on gene regulation.

2.1. Gene Expression

Responses to

Metabolic Shifts

Besides the fast responses via the modulation of enzyme activities,
metabolic shifts also activate or repress the expression of many
genes. Notwithstanding its relative slowness, regulation of gene
expression confers numerous selective advantages (this is particu-
larly true for sessile organisms such as plants, because they cannot
evade their changing environment and therefore must flexibly
adjust to it). It is easier to control a large number of genes or
operons by inserting or creating the binding sites on promoters
than altering the structure and modification of each individual
protein (56). Regulation via gene expression is thereby more
effective and malleable for evolution.

It has long been recognized that a particular carbon source in
the growth medium of microbes can inhibit the synthesis of
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enzymes involved in the metabolism of alternative carbon sources
(41). One of the best studied catabolic repression is so called the
glucose effect. In the presence of glucose, the expression of
enzymes involved in other sugar metabolic pathways, such as
galactose and glycerol, is repressed (41, 57). Conversely, in a
glucose-limiting medium, the genes involved in the TCA cycle,
NADH dehydrogenase, and electron transfer are up-regulated
relative to the amino acid-limiting medium (41, 58). Other
genes involved in carbon metabolism and energy biosynthesis are
likewise differentially expressed under different carbohydrate con-
ditions (e.g., 15, 57, 59)).

Another example of differential expression of metabolic
enzymes under different carbon sources is the diauxic growth of
microbes (60). In a mixture of glucose and lactose, E. coli experi-
ences two sequential exponential growth phases, where each phase
reflects the utilization of one carbon source. The levels of enzymes
and transporters for one carbon source are repressed when the cells
utilize the other carbon source (61).

With the rapid progress of microarray technology, global gene
expression responses of many organisms and tissues under various
metabolic conditions are becoming available. Examples include
the supply of different carbon sources such as acetate (59), lactose
(62), sucrose (57), amino acid starvation (63), nitrogen supply
(64), salt (65), and environmental stress (66). Overall metabolic
perturbations often induce global expression responses. Some
general rules of gene regulation in metabolic shifts will be dis-
cussed in the later section.

In addition to alterations of metabolic conditions, the expres-
sion profiles of knocking out the various metabolic enzymes are
also reported. Examples include enzymes in the glycolysis pathway
in E. coli (22, 67), the galactose metabolism pathway in yeast (68),
and a global compendium of knockout assays in yeast (69).
Remarkably, deletion of genes along the central carbon metabo-
lism often induces only mild responses along these pathways
(22, 67), illustrating the robustness of cells at the level of gene
expression, as well. On the other hand, some gene knockouts
demonstrate phenotypes only in specific growth medium, while
other gene knockouts have lethal phenotypes (e.g., (70)).

2.2. Mechanisms of

Inducing Expression

Responses upon

Metabolic Shifts

To alter expressions under the conditions of metabolic shifts, a cell
needs to establish feedback mechanisms to sense the metabolites
and regulate the transcription and/or translation apparatus. Below
we introduce a simple classification of the feedback mechanisms
and give a few examples in each class.

l Metabolites can directly interact with the transcriptional appa-
ratus. In microbes, some metabolites can physically bind to cis
-regulatory elements or interact with transcription factors and
directly regulate transcription. One of the most well-known
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cases is the lac operon (61) in E. coli. In the absence of lactose,
a repressor binds to its promoter and blocks the transcription
of lac genes. Lactose metabolites bind to the repressor, facil-
itates its dissociation from the promoter, and allows the RNA
polymerase to initiate transcription. In yeast, galactose also
regulates the transcription of enzymes and transporters by
directly interacting with Gal4p and Gal80p transcription factors
(49, 50). In the absence of galactose, repressor Gal80p binds to
the promoter and blocks transcription. Galactose binds to
Gal80p, removes it from the promoter, and allows the activator
Gal4p to occupy the promoter and initiate transcription.

l Feedback regulation mediated through signal transduction path-
ways. The most common pathways of regulating transcription
by metabolites are the signal transduction cascades. Metabo-
lites, small molecules, and other environmental changes are
detected by receptors on the cellular surface. The signals are
transduced through a series of protein modifications (e.g.,
phosphorylation, ubiquitination) and eventually regulate tran-
scription factors or other proteins. In yeast, glucose-induced
expression responses are triggered by various signal transduc-
tion pathways (71). Glucose levels are detected by Snf3 or Rgt2
sensors and modulate the activity of G proteins (Ras and Gpa2),
which bind independently to adenylase cyclase (Cyr1) and sti-
mulate cAMP production. cAMP binds to the protein kinase A
(PKA) tetramer and facilitates the dissociation of the kinase
subunit (TPK). TPK is translocated into nucleus and regulates
transcription factors. Similarly, the glucose responses in E. coli
are regulated by the CRP–cAMP complex (41). Glucose inhi-
bits the synthesis of cAMP by adenylase cyclase, thus reducing
the level of the CRP–cAMP complex and repressing the tran-
scription of many genes.

l Riboswitches. A recently discovered mechanism for metabolite-
driven gene regulation, the riboswitches are parts of mRNAs
that bind to small molecules and modulate the translation of
mRNA in cis (72). The binding of small molecules often
inhibits translation by forming early termination hairpins,
blocking the ribosome binding sites, or inducing self-cleavage.
Different classes of riboswitches respond to different metabo-
lites such as thiamine derivatives (73), vitamin B12 (74),
purine (75), and other metabolites.

2.3. Governing

Principles of Metabolic

Gene Regulation

Except for some well-studied systems in a small number of model
organisms, the mechanisms of regulation of many metabolic genes
are still yet to be revealed. However, the nearly complete charac-
terization of metabolic networks in a few species as well as the
rapidly accumulating volume of high-throughput gene expression
data facilitates the studies of the relations between gene expression

274 Yeang



and their functions in the metabolic system. High-level rules that
govern such relationships have been proposed, and some of them
are being empirically tested. These studies provide valuable insight
at systems level and useful guidelines for further experiments.

The apparent rule of homeostasis often prevails when the
organisms undergo metabolic shifts or environmental stress.
When glucose is supplied, cells begin to produce enzymes required
for glycolysis and aerobic respiration while the enzymes metabo-
lizing other carbon sources such as lactose or acetate are repressed
(57, 59). The opposite responses occur upon glucose starvation
(15). Under amino acid starvation, E. coli and yeasts up-regulate
genes involved in amino acid synthesis (15, 51). Many metabolic
shifts, such as nutrient starvation or intoxication, or drastic
changes of osmotic pressure also induce stress responses of the
cells (e.g., (66)). General responses to stress include cell cycle
arrest, halt of biomass accumulation, down-regulation of mRNA
and protein synthesis, over-expression of stress response genes,
sporulation for unicellular organisms, and apoptosis for multicel-
lular organisms.

To induce coordinated expression responses, genes must
possess coordinated regulatory structures. In bacteria, operons
serve as basic units of co-expression. In E. coli and many other
species, genes located in the same operons often function in the
same metabolic pathways (e.g., (61)). Minimization of the quad-
ratic objective function (equation 6) with the linear constraint
functions (equations 2 and 3) can be solved by many mathema-
tical tools (e.g., see 26). Thus, additional rules are needed to
explain the relationships of metabolic gene regulation and func-
tions. Below, we summarize a few rules that emerged from the
recent studies.

l Proximity. The operon structures suggest genes with similar
functions in the metabolic network are co-regulated. One way
to define functional similarity is the distance between two
enzymes in the metabolic network. Therefore, one may expect
that close enzymes in the metabolic network are co-regulated.
Kharchenko et al. examined the expression data in E. coli and
found that positive co-expression decreases with distance in
the network, whereas negative co-expression increases with
distance, up to a certain threshold (76). Other studies also
suggest that proximal genes in the metabolic networks are co-
expressed (e.g., (77)). In addition to obvious co-regulation,
the genes along a metabolic pathway may exhibit subtler reg-
ulatory relationship. One such example is the ‘‘just-in-time’’
regulatory system of arginine biosynthesis in E. coli identified
by Zaslaver et al. (78). In this system, the genes in a linear
metabolic pathway are sequentially activated, such that the
enzyme of a reaction is synthesized just in time to process
the substrates generated in the previous step. These genes
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are regulated by the same set of transcription factors, and their
sequential activation results from differential strengths of the
binding motifs.

l Network topology. The rule of co-regulation may not apply
when genes are in different linear pathways. Two metabolic
pathways may be converged to or diverged from a third path-
way. Several authors have studied the coexpression of genes
in convergent and divergent pathways. Kharchenko et al.
showed that in the three-gene motifs of the S. cerevisiae
metabolic network enzymes catalyzing divergent reactions
are significantly co-expressed compared to enzymes catalyzing
convergent reactions (76). In contrast, Ihmels et al. showed
that in yeast, co-expression occurs only along one of the two
divergent pathways (79). Moreover, they showed that iso-
zymes are often separately co-expressed with distinct pro-
cesses. These conflicting results suggest that the relationships
between co-regulation and metabolic network topology
require further in-depth study.

l Metabolic fluxes. As the distribution of metabolic fluxes is, at
least in part, the consequence of gene expression, the rules of
metabolic flux distribution should be correlated with the rules
governing gene regulation. Several authors correlated proper-
ties of metabolic fluxes with gene expression. Stelling et al.
constructed an index of ‘‘control-effective flux’’ (CEF) of a
substrate from metabolic mode analysis and used it to measure
the efficiency of biomass and energy production using a spe-
cific substrate (12). The CEF scores were used to predict the
relative mRNA levels under varying substrate availability con-
ditions. The expression data for 50 genes on acetate versus
glucose as carbon source showed good agreement with the
scores. Furthermore, Bilu et al. found a strong correlation
between the flexibility of metabolic fluxes and the diversity
of expression levels and an anticorrelation between flux flex-
ibility and promoter conservation (80). In addition, they also
showed genes active in many optimal metabolic fluxes tend to
have conserved sequences. Both results suggest that the
expression of genes is tied to the diversity and importance of
metabolic fluxes.

l Feedback. Some of the rules of feedback regulation are dis-
cussed in earlier sections, e.g., the supply of an input substrate
often enables its metabolic pathway while disabling the com-
peting pathways metabolizing alternative input substrates.
Moreover, the over-production of an output substrate of a
pathway often turns the pathway off. These changes of a
metabolic pathway can be achieved by altering the activities
of enzyme or by modulating the expression of genes encoding
them. One example of such feedback system is the regulation
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of enzymes in the tetralin degradation pathway of E. coli (81).
The input substrate (tetralin) induces the enzyme gene expres-
sion along the pathway, whereas an intermediate product
(reduced ferredoxin) inhibits transcription of the gene(s)
encoding the key the enzyme(s). The composite effects of
feedback through both gene regulation and allosteric regula-
tion maintain the homeostasis of metabolism.

3. Integration
of Metabolic
Reactions and
Gene Regulation In the post-genomic era, focused investigations of the global prop-

erties and component interactions in the biological systems become
more and more important as well as powerful because of huge
amount of data that are becoming available. Integration of meta-
bolic reactions and gene regulation is a testing ground for systems
biology. Decades of biochemical studies have already mapped the
complete metabolic networks (or a large portion of) in multiple
organisms. Genome sequences of many organisms have already
been published, a large amount of microarray mRNA expression
data are already available, and more recently, large volumes of
metabolic flux data have been generated. Furthermore, other
advanced technologies have produced various large-scale data sets
probing different aspects of cellular processes such as protein expres-
sion levels, protein–DNA interactions, protein–protein interactions,
and protein or DNA modification. These data allow us to consider-
ably deepen our understanding of the integrated system of meta-
bolic reactions and gene regulation. Databases integrating various
metabolic and regulatory information have already been established,
and some integrated models that take advantage of these databases
have been proposed. Results from some of integrative research
projects of this kind demonstrate great potential for applications in
agriculture, medicine, as well as environmental and energy sciences.

3.1. Integrated

Databases

One of the most comprehensive databases of metabolic information
is BioCyc ((82), http://.biocyc.org). It is a collection of 371 path-
way/genome databases covering the metabolic reactions, sub-
strates, enzymes, genes, operons, and transcription factors from
374 species. The database is organized by species and pathways.
Pathways are hierarchically classified and visualized with informa-
tion of different levels of details. The operons of genes as well as
their respective transcription factors are also displayed. In addition,
users can choose to compare the pathways across multiple species.

BioCyc contains both curated information from the literature
and computationally derived information with either moderate or
no manual curation. As subsets of BioCyc, MetaCyc ((83),
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http://metacyc.org) and EcoCyc ((84), http://ecocyc.org) are
intensively curated databases which contain only information
reported from the literature. MetaCyc contains the metabolic net-
work information from many species but no operon information.
EcoCyc contains both metabolic and operon information for
E. coli alone.

BioCyc contains primarily the data for prokaryotes organisms,
although human, S. cerevisiae and S. pombe are also covered. Recently,
a global reconstruction of the human metabolic network has become
publicly available (85). The authors reconstructed the metabolic net-
work from genome sequences and annotations, pathway databases,
and manual curation of network components from the ‘‘bibliome’’ of
>1500 published articles over the period of more than 50 years. The
reconstruction database contains the information on metabolites,
reactions and enzymes, compartmentalization of reactants, descrip-
tion of gene–protein relationships, and confidence scores and refer-
ences on various pathways. Despite its comprehensiveness and
accuracy on the human metabolic network, the reconstruction data-
base does not contain information about the gene regulation.

Genomic, regulatory, and metabolic information about plants
remains relatively under-represented. AraCyc contains the meta-
bolic information of Arabidopsis thaliana ((86), http://www.ar-
abidopsis.org/biocyc/index.jsp). Several detailed databases of
yeast gene function, regulation, and metabolism are available,
including the Saccharomyces Genome Database (SGD, (87),
http://www.yeastgenome.org/), a proprietary Yeast Proteome
Database (YPD, https://www.proteome.com/proteome/), and
the Munich Information Center for Protein Sequences (MIPS,
(88), http://mips.gsf.de/). MIPS also contains the information
on other species such as human as well as on A. thaliana.

Kyoto Encyclopedia of Genes and Genomes (KEGG) contains
information about genes, proteins, reactions, and pathways of 761
species ((89), http://www.genome.jp/kegg/kegg1.html). The
curated pathways in KEGG include both metabolic and signal
transduction pathways. Unlike BioCyc, KEGG covers many eukar-
yotic species, especially animals, yet it does not contain the regu-
latory information.

3.2. Integrated Models Various methods have been proposed to integrate the information of
metabolic and regulatory networks for different types of data-sets. The
expression levels of enzymes can be treated as additional constraints in
flux balance analysis. For instance, Covert et al. imposed zero con-
straints of linear programming on the metabolic fluxes where the
enzyme expression levels are low (20, 21). This method is extended
to predict both metabolic fluxes and gene expression under gene
knockout or metabolic perturbations (20, 90–92). The expression
levels of enzyme genes are constrained by the known relationships
between metabolite concentration and transcription factors.
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Alternatively, Stelling et al. predicted gene expression levels
from the information of metabolic fluxes alone (12). They quanti-
fied the effectiveness of a substrate as the weighted sum of the
relative substrate uptake over all viable metabolic flux modes. This
control-effective flux index was used to predict the mRNA levels of
the catalyzing enzymes.

As opposed to the metabolic flux analysis, many gene expres-
sion models adopt information of the metabolic network or utilize
experiments under metabolic perturbations to build the gene
regulatory models. For instance, Gat-Viks et al. have built a factor
graph model to incorporate both known regulatory functions and
noisy measurements from multiple sources and extended the
known model by learning the augmented graph structures (93).
They used part of the metabolic network in the initial network
model. In addition, many such studies incorporate data from the
relevant knockout mutants. Ideker et al. compared single and
double knockout gene expression data with galactose supplu to
infer the causal dependencies of enzymes involved in galactose
metabolism in yeast (68), with the assumption that if two genes
are in the same pathway, then knocking out the downstream gene
should manifest the same phenotype as the double knockout (i.e.,
this would incur no additional fitness cost).

The coupling of metabolic and regulatory networks is bidirec-
tional. On the one hand expressions of enzyme mRNAs/proteins
can modulate the reaction activities and metabolic fluxes. On the
other hand metabolite concentrations and metabolic fluxes can
regulate gene expressions. The models described above emphasize
the coupling along either direction. Yeang et al. developed a
probabilitic graphical model to study the coupling of gene regu-
latory and metabolic networks in both directions (94). They used
pathways in the joint network to explain the changes of gene
expression and metabolic fluxes under knockout or metabolite
perturbations. The forward links from enzyme gene expressions
to the fluxes of metabolic reactions are determined by functional
annotations of enzymes. The feedback links between metabolites
and transcription factors are learned from the data to maximize the
number of explained pertubration effects.

The models described above are discrete and stationary. To expli-
cate the quantitative and dynamic systems properties, various dynamic
system models of metabolic reactions and gene regulation have been
proposed. Examples include the models of diauxic shift (95), pher-
omone response pathways (96), and general metabolic reactions (97).

Besides predicting metabolic fluxes or gene expression
changes under perturbations, some programs can also identify
the target genes that would maximize the flux of desired products
if knocked out (98,99). Furthermore, empirical studies of meta-
bolic flux analysis have been applied in metabolic engineering (see
the review (100)).

Integration of Metabolic Reactions and Gene Regulation 279



4. Conclusion

The studies on the integration of gene regulation and metabolic
reactions have been progressing with accelerating pace, thanks to
new experimental technologies, massive amount of data, and
development of novel bioinformatic methods/tools. This progress
sets a stage toward a deeper understanding of integration of cel-
lular subsystems and its potential applications in biotechnology,
medicine, as well as environmental and energy sciences. There are
many open problems and new directions being actively pursued by
researchers from multiple disciplines. Here we list some of them
which are not covered in this review.

While most studies referred in this review focus on E. coli and
yeast, the whole-genome sequences, metabolic networks, and
gene regulation information of many other species (especially
microbes) are already available, and plants, particularly A. thali-
ana, are not far behind. Comparative studies of these types of
information across multiple organisms can reveal the evolution of
the integrated gene regulatory and metabolic systems. Compar-
isons of genome sequences, regulatory and metabolic networks are
already active research fields in computational biology. Integration
of these comparisons will be the next step toward a system-level
understanding of cells.

The communication between gene regulatory and metabolic
systems in plants and other multicellular organisms is intrinsically
much more complex than in unicellular systems. In multicellular
organisms, many metabolic pathways are active only in specialized
tissues/organs, and their inputs and products are transported from
and to other tissues. The crosstalks between metabolism and gene
regulation are thus likely tissue specific and are subject to more
complex control beyond the simple rules stated above. Investigation
of the integrated systems in multicellular organisms requires more
tissue-specific data (and especially metabolic flux data), as well as
better understanding of the tissue-specific regulatory programs.

In the natural environment, physiological activities of the inha-
bitants are related. It is hence possible to study coevolving or
symbiotic relations in the metabolic or regulatory networks of the
inhabitant species. For instance, sequencing the aggregate samples
of microbial genomes from the environment – metagenomics – has
already led to many discoveries regarding the symbiotic relations
(101). With the aid of fast sequencing technologies and comparative
studies, it will be possible to study the interactions of species at
genetic/molecular levels. The study of the interacting metabolic
networks of the inhabitants in a specific environment – ‘‘metameta-
bolomics’’ – would possibly reveal the circulations of carbons, nitro-
gens, toxic compounds and energy in the environment.
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Knowledge of the communications between gene regulatory
and metabolic systems can lead to a wide range of applications.
Genetic engineering and metabolic engineering already have sub-
stantial impacts in agriculture and pharmaceutical industry. With
the progress in systems biology and synthetic biology, it is becom-
ing possible to re-program or synthesize organisms to produce or
consume optimal quantities of molecules in specific timing or
environmental cues. These new organisms can contribute both
to the basic knowledge and to the improvements in production
of biofuels, antibiotics, proteins, agricultural yield, as well as to
cleanup of environmental wastes.
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Chapter 14

Applying Word-Based Algorithms: The IMEter

Ian F. Korf and Alan B. Rose

Abstract

Important patterns can be found in strings of characters such as nucleotides in a DNA sequence by
examining the frequency of occurrence of specific character combinations or words. The abundance of
words can reveal the presence of underlying trends governing the order of characters, even if the biological
reasons for those trends remain mysterious. As an example of one way in which word frequencies have
provided insight, we describe the IMEter, a word-based algorithm for analyzing introns and their effect on
gene expression. The IMEter demonstrates that introns located near the beginning of genes are compo-
sitionally distinct from later introns and that these differences are closely related to the ability of some
introns to increase gene expression. This word-based approach has proven more successful than deletion
analysis at identifying the sequences responsible for elevating expression because they are dispersed
throughout stimulatory introns.

Key words: Markov model, word based, nucleotide frequency, odds ratios, intron, gene expression,
motif, intron-mediated enhancement, IMEter.

1. Sequences as
Markov Models

Whether the medium is conversation, chalkboards, journal arti-
cles, or computers, biological sequences are often represented as
text. While we know that DNA, RNA, and protein molecules are
dynamic entities with physical and chemical properties that depend
on their shape and environment, representing biological
sequences as one-dimensional strings is convenient and allows
one to take advantage of analysis techniques pioneered in Crypto-
graphy and Natural Language Processing.

One of the simplest analyses one can perform with any text is
to count the frequencies of individual symbols. Table 14.1 shows
the frequency of each letter in Darwin’s Origin of Species. Not
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surprisingly, the most common letter is ‘‘e’’, which accounts for
approximately 13% of all letters. Similarly, one can count the letters
from the Arabidopsis thaliana genome and observe that the
genome is approximately 36% GC (Table 14.2). Although these
analyses are very simple, they provide useful information. For
example, the letter frequencies in Darwin’s book closely resemble
the letter frequencies in English in general, and one could use such
information to deduce that Origin of Species was published in

Table 14.1
Letter frequencies in Origin of Species

Symbol % Symbol %

A 7.98 N 7.17

B 1.69 O 7.21

C 3.50 P 1.89

D 3.70 Q 0.09

E 13.18 R 6.27

F 2.78 S 6.88

G 1.82 T 9.00

H 4.99 U 2.56

I 7.43 V 1.19

J 0.07 W 1.60

K 0.37 X 0.24

L 4.19 Y 1.64

M 2.51 Z 0.05

Table 14.2
Genomic nucleotide frequencies

A. thaliana D. radiodurans

Intron

Symbol Genome Exon All Proximal Distal Genome

A 32.00 29.85 26.73 25.7 27.3 16.54

C 18.02 20.14 15.46 14.8 16.2 33.51

G 18.01 20.16 17.16 17.0 15.8 33.45

T 31.97 29.84 40.64 42.5 40.7 16.49
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English without ever reading the book. Similarly, one can examine
the nucleotide compositions of various genomes and recognize
that each organism has a characteristic (though not necessarily
unique) composition, and one might use these frequencies to
look for horizontal gene transfer or contamination events.

While simple letter counting can be useful, it throws away the
context of each letter. Let us first consider the immediate context of
a letter, which is defined by adjacent letters. It may seem strange,
but in text and sequence analysis, only the preceding letter is used as
the context. The reason for this is that we model sequences as the
products of Markov processes. A useful way to think of a Markov
model (or chain) is as a machine that randomly generates plausible
observations. Let us consider a Markov model for the daily weather
with three states called Sunny, Cloudy, and Rainy. We must define
transition probabilities between the various states that determine
how often and in what order the observations are generated. For
example, we might define the probability of transitioning between
Sunny and Cloudy to be greater than Sunny and Rainy because
clouds usually precede a rain storm. Figure 14.1 shows such a
model. If we want the weather model to mimic actual weather
patterns, the transition probabilities should match local weather
observations. Given the model in Fig. 14.1, we can start in a
state, such as Sunny and then create a new day of weather by
‘‘rolling dice’’ to determine if tomorrow will be Sunny, Cloudy,
or Rainy. It should be obvious that whatever tomorrow’s weather is
depends only on today, not last year. This property where the future
is independent of the distant past is known as the Markov property.

Getting back to biology, let us now consider that genomes are
products of Markov processes. The simplest Markov model one
can make is that each nucleotide is generated without respect to
context. That is, we can simply define probabilities for A, C, G, and
T and draw these at random to generate a sequence. Let us say we
do this for the A. thaliana genome and the first three nucleotides

Fig. 14.1. Markov model for daily weather.
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generated are GCT. The probability with which this particular
sequence was generated by the model is approximately 0.010
(0.18 � 0.18 � 0.32). To take nearby context into account, we
must record the conditional probability of each letter given the
preceding letter(s). That is, we need to know the probability of
generating a T given that we have already seen a T (this is similar to
the weather example above). If we are concerned with only a single
preceding letter, this is called a first-order Markov chain. If we are
concerned with two letters of context, for example to model the
probability of generating a G given that we have already seen an A
followed by a T, this is a second-order Markov chain. In general
terms, biological sequences are often modeled by an nth-order
Markov chain where n is some non-negative integer. In practice,
the value of n is commonly in the range of 1–5.

The letter frequencies from Tables 14.1 and 14.2 can now be
understood as 0th-order Markov models. They predict that the
probability of observing CG is simply the probability of C multiplied
by the probability of G. While you might believe this to be true of
the A. thaliana genome, you certainly would not believe this of
English since you have never seen any words where C precedes G
(because there are none). The immediate context of a letter is clearly
very important in language. Is this also true of biological sequences?
Table 14.3 shows a first-order Markov model for the A. thaliana
genome. There are some interesting properties. For example, the
probabilities of the homodimers (AA, CC, GG, TT) are greater than
expected. Also, the probabilities are not symmetric. For example,
the probability of C followed by G is not the same as G followed by
C. For this reason, when modeling biological sequences, it is gen-
erally a good idea to go beyond 0th-order Markov chains. Exactly
how far beyond zero depends on several factors. One important
consideration is the size of the training set. A 15th-order Markov
chain requires approximately 1 billion (415) contexts. If such a
model was applied to the human genome (approximately 3 billion
bp), each observation would receive less than one count on average,
which does not lead to a very useful model.

Table 14.3
First-order Markov chain from A. thaliana

Preceding symbol

Symbol A C G T

A 36.18 35.24 35.58 23.98

C 16.36 18.81 16.65 20.02

G 18.57 12.99 18.74 19.86

T 28.89 32.97 29.03 36.14
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In addition to the immediate context of a symbol, there are
also larger contexts. Chromosomes do not have uniform composi-
tions throughout their lengths, and a single Markov model does
not capture regional variations very well. Table 14.2 shows
nucleotide frequencies for A. thaliana exons and introns. The
differences are obvious even at the 0th-order level. The composi-
tional difference between coding and non-coding sequences has
been used by many researchers to identify protein-coding genes in
genomic DNA. Early efforts (1) used second-order Markov mod-
els to report regions that were likely to be coding but did not
attempt to define exon–intron boundaries. Today, gene-finding
programs are much more sophisticated (2) and take into account
such biological features as splice sites, promoters, and poly-A sites.
Still, at the root of these gene prediction algorithms, the sequence
is generally represented as an nth-order Markov model.

Previously we noted that GCT would be generated by an
A. thaliana 0th-order Markov model with a probability of approxi-
mately 0.010. If the model had been derived from Deinococcus radio-
durans (see Table 14.2), the sequence would be generated with a
probability of approximately 0.019 (0.335 � 0.335 � 0.165). If
we are given just the sequence GCT and asked to guess its origin, the
odds are almost twice as great that it came from D. radiodurans than
from A. thaliana. Similarly, given models for coding and non-coding
sequence, it is very simple to examine an unknown sequence (or
segment of a sequence) to determine which model is more likely
to have generated the sequence. In essence, this is how gene-finding
algorithms work, though they use higher order Markov chains.

Probabilities and odds ratios are typically calculated as loga-
rithms in bioinformatics applications. One reason for this is that
genome data is large, and if you repeatedly multiply numbers, you
may overflow or underflow the numeric representation in the
computer (e.g., if you keep squaring a number on a calculator,
you eventually reach a limit as the value approaches infinity or
zero). The base of the logarithm is generally 2 or e, and the
corresponding units are bits or nats. In general, log-odds values
are called scores. For example, in sequence alignment, the score for
any two amino acids is the log-odds ratio of the observed and
expected pairings, where the observed pairing is calculated from
multiple alignments of related proteins and the expected pairing is
the random expectation from individual amino acid frequencies.
A high score indicates the amino acids are found more often
than by chance. For example, the score for valine and leucine is
positive because these are chemically similar amino acids that can
often substitute for one another without compromising protein
function. In gene finding, the score of a predicted exon reflects the
log-odds ratio of having been generated by a coding vs. non-
coding model. A positive score indicates the region is probably
coding while a negative score indicates it is probably non-coding.
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2. Words as
Functional Units

Both in language and in sequence analysis, the concept of a word is
very useful. In text, it is not letters but words that convey informa-
tion. Similarly, in biology, specific strings such as the amino acids
RGD (extra-cellular matrix attachment) or the nucleotides
GAATTC (EcoRI restriction site) have known functional roles.
In both language and sequence, the meaning of a word often
depends on its context.

Identifying words in text is trivial if the language uses spaces as
delimiters, but in languages without delimiters, such as ancient
Roman, one must use context to parse letters into words. The
words and meanings in biology are much more difficult to parse
than natural languages for several reasons: (a) there are only four
letters in DNA; (b) there are no delimiters or punctuation; (c)
there is no dictionary of legal words; (d) we do not know the rules
of the language; and (e) words can often be misspelled and retain
their biological meaning.

In sequence analysis we use a simplified definition of word that
does not require knowing its meaning (function). A word is simply
a sequence of length k where k is some positive integer. Words are
also called k-tuples or k-mers or even oligos. To identify all
the words in a sequence, one simply moves a window of length
k one letter at a time along the entire sequence (without making
truncated words at either end). Words created this way are there-
fore very similar to nth-order Markov models.

Like letter frequencies, word frequencies can be informative in
text and sequence. Table 14.4 shows the top 20 words from the
Origin of Species. As you might expect, the tops the list and species is
quite common. If we construct a quasi-genomic version of the
book by removing all the spaces and punctuation, the text becomes
one long chromosome-like string that is difficult to interpret.

malsonecatforinstancetakingtocatchratsanothermiceonecata
ccordingtomrstjohnbringinghomewingedgameanotherhareso
rrabbitsandanotherhuntingonmarshygroundandalmostnigh
tlycatchingwoodcocksorsnipesthetendencytocatchratsrathertha
nmiceisknowntobeinheritednowifanyslightinnatechangeofha
bitorofstructurebenefitedanindividualwolfitwouldhavethebe
stchanceofsurvivingandofleavingoffspringsomeofitsyoungwo
uldprobablyinheritthesamehabitsorstructureandbytherepeti
tionofthisprocessanewvarietymightbeformedwhichwouldeith
ersupplantorcoexistwiththeparentformofwolforagainthewol
vesinhabitingamountai

Since we no longer know where the word boundaries are, we
can use the sequence analysis concept of a word to identify all
possible words of some size k and determine their frequencies.
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Table 14.4 shows that even without knowing the true word
boundaries, it is possible to identify common words and phrases.
Now imagine if the text was written in a different language and
was interspersed with lots of seemingly random letters. This is
the problem we have to deal with in analyzing biological
sequences.

Even though genomes are complex entities and our knowl-
edge of genome biology is still in its infancy, it is possible to make
significant advances using methods as simple as word frequency
analysis. As an example, we describe our research on how introns
affect gene expression. While our work utilized the A. thaliana
genome (3), and this work would have been more difficult without

Table 14.4
Word frequency analysis of Origin of Species

Rank Word 3-mer 4-mer 5-mer 6-mer 7-mer 8-mer

1 the the tion ofthe specie species differen

2 of and nthe ation pecies thesame havebeen

3 and ion ofth speci softhe thatthe especies

4 in ing fthe pecie hesame natural selectio

5 to tio thes ecies thesam differe election

6 a nth ther inthe thatth ifferen varietie

7 that ent that which differ havebee arieties

8 as tha othe tions hatthe avebeen naturals

9 have oft atio other ations especie lselecti

10 be her spec ction ofthes lection alselect

11 is sof peci onthe natura selecti characte

12 on fth have natur atural electio haracter

13 species hes inth softh ection varieti aturalse

14 by for cies atthe tionof arietie turalsel

15 which ati ecie andth genera rieties uralsele

16 or int hich thesa especi fromthe ralselec

17 are ere whic tothe eofthe animals distinct

18 it hat sand esame iffere aturals ifferent

19 for oth tthe hesam havebe lselect conditio

20 with ies with their fferen ication ondition
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the entire sequence, the sine qua non was not the genome, but
rather knowing what to model. In other words, the key was under-
standing the biology.

3. The Biology of
Intron-Mediated
Enhancement

Shortly after introns were discovered, it was noted that several
genes were expressed very poorly when their introns were
removed. Conversely, inserting introns into reporter genes that
lacked them, including bacterial genes such as lacZ or GUS, often
increased the expression of those genes in transgenic organisms.
Most of the introns characterized could only affect expression
from within transcribed sequences and in their natural orientation,
indicating that they operated by a still undefined mechanism that is
distinct from transcriptional enhancer elements. This intron-
mediated enhancement (IME) (4) has been observed in a broad
diversity of organisms including mammals, fungi, nematodes,
insects, and plants, suggesting that it is an ancient and fundamental
feature of eukaryotic gene regulation.

A puzzle arose from attempts to identify the sequences within
introns that are responsible for elevating expression. Some effi-
ciently spliced introns clearly stimulate expression much more than
others do, suggesting the presence of enhancing sequences within
some introns. However, motifs that are conserved between stimu-
latory introns could not be found by conventional homology
searches due to the large heterogeneity in intron sequence and
size coupled with the relatively small number of introns known to
stimulate expression. Attempts to locate enhancing regions by
deletion analysis also have failed because no unique sequences are
individually required for the intron to increase mRNA accumula-
tion (5). That is, introns that contain large internal deletions but
are still spliced usually stimulate mRNA accumulation as much as
does the full-length intron, even when the combined deletions
span the entire intron. How can differences between introns be
sequence based if no unique sequences are involved? One possible
explanation is that the enhancing sequences are redundant and
distributed throughout introns. This idea was confirmed using
hybrid introns constructed from parts of enhancing and non-
enhancing introns (6). The dispersed nature of the expression-
affecting sequences contrasts with more familiar regulatory ele-
ments such as enhancers, promoters, RNA secondary structures
such as stem loops, binding sites for proteins or small RNAs, or
aptamers, whose functions depend on discrete and localized indi-
vidual sequences.
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Three lines of evidence suggest that introns near the start of
their genes are more likely than other introns to stimulate expres-
sion. First, virtually all of the introns known to boost expression are
first introns, although not all first introns have this ability. Second,
introns that elevate expression when located in the 50-UTR lose this
effect when they are moved to the 30-UTR. Third, an enhancing
intron that is placed progressively farther downstream in a gene
starts to lose its enhancing ability at about 500 bp from the pro-
moter and has no effect �1 kb or more from the 50 end (7).

Defining the sequences required for IME is desirable because
it would provide a toehold for the biochemical isolation of trans-
acting factors that bind to those sequences, which could be an
important path to understanding the novel mechanism through
which introns affect expression. In addition, identifying the enhan-
cing sequences would provide a means to predict whether or not
an untested intron is likely to elevate expression. Eventually, with
the knowledge of what sequences enhance expression, it may be
possible to design synthetic introns that are more powerful than
any naturally occurring one, which would be very useful for trans-
genic applications seeking to maximize gene expression.

4. The IMEter

The key to modeling IME is the hypothesis that IME signals are
enriched in introns located near the promoter (proximal) com-
pared to those farther down the transcript (distal). Starting with
simple letter counting, we can look at the sequence composition of
proximal and distal introns. Table 14.2 shows the single letter
frequencies where proximal introns are defined as those that begin
within 500 bp of the promoter and distal introns are defined as
those that begin more than 500 bp from the promoter. The fact
that the compositions are not identical suggests that there may be
important differences between proximal and distal introns. Even if
the compositions were identical, however, there may be higher
order differences not visible at the 0th order.

Our program for predicting IME, the IMEter (6), is very
similar to algorithms for predicting coding regions. Instead of
comparing arbitrary genomic regions to the compositions of cod-
ing and non-coding sequences, we compare arbitrary introns to
the compositions of proximal and distal introns. A positive score
indicates an intron is more similar to proximal introns than distal
introns and is therefore more likely to contain elements responsi-
ble for IME. Since we do not consider the splice donor and
acceptor sequences to be generated from the same model as the
body of the intron, the IMEter omits these regions. Before
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training the IMEter, we must choose several parameters: (a) the
word size, (b) the cutoff for proximal introns, (c) the cutoff for
distal introns, (d) the length of the splice donor site to omit, and
(e) the length of the splice acceptor site to omit. For simplicity, the
cutoff for both proximal and distal can be a single value, such as the
500 bp we used for Table 14.2.

The IMEter scoring function can be described by the follow-
ing equation:

S ¼
Xi�L�K�A

i¼1þD

log
Pwi

Qwi

� �

where S is the IMEter score, L is the length of the intron, K is
the word size, A is the length of the splice acceptor consensus, D is
the length of the splice donor consensus, wi is a word of length K at
position i, and P and Q are frequency distributions for words of
length K in proximal and distal introns.

Training the IMEter requires a set of genes where the position
of the 50 end of the transcript and the positions of introns are
known. Fortunately, the Arabidopsis genome annotation contains
thousands of experimentally identified examples due to the efforts
of the full-length cDNA sequencing project (8). While we utilized
thousands of genes, we find that it is also possible to train the
IMEter on a few hundred conserved genes. As part of our training
procedure, we removed highly paralogous genes (to limit over-
training on large gene families) and those genes with suspect
features (e.g., very short or GC-rich introns) that may indicate
genome annotation errors.

To test whether IMEter scores have biologically meaningful
values, we trained the IMEter with an educated guess at the para-
meters (word size 5, proximal/distal cutoff at 400 bp, 5 bp donor
site, 10 bp acceptor site) and examined the scores of introns whose
effect on gene expression was already known. The only data set
appropriate for this analysis comes from experiments in Arabidopsis
where the enhancing ability of different introns has been tested with
the same reporter gene in single-copy lines. Even though the
quantitative data set was small, representing just six introns, it was
the largest known for any organism. Furthermore, the data are very
reproducible, as indicated by the small amount of variation in
expression, presumably because only single-copy transgenic plants
were analyzed. When IMEter scores were compared to the expres-
sion values, a very strong linear correlation was found between an
intron’s IMEter score and the degree to which that intron stimu-
lates mRNA accumulation (Fig. 14.2 filled circles). The tight
correlation suggested that IMEter scores might be able to predict
the enhancing ability of previously uncharacterized introns. To test
this, six additional introns were chosen, and all enhanced expression
to the degree expected from their IMEter scores (Fig. 14.2 open
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circles). Further evidence supporting the connection between
IMEter scores and enhancing ability comes from the 21 other Ara-
bidopsis introns reported in the literature to boost expression of
different genes. All but one of these introns have a positive IMEter
score, and 18 have scores in the top 5% of all Arabidopsis introns.

The IMEter can be optimized by changing various parameters.
Figure 14.3 shows how variations in word size and the proximal/
distal cutoff affect performance as measured by the R2 value.
A word size of 1, corresponding to a 0th-order Markov model, is
not very useful. Larger word sizes perform much better, but as the
word size gets over 8, the R2 value drops off. This is especially
apparent when the proximal/distal cutoff is low. This is probably
due to the smaller amount of sequence available and the larger
number of words. In Arabidopsis, a variety of parameter combina-
tions perform approximately equivalently. This may not be true in
other genomes or other sequence analysis scenarios, so it is a good
idea to survey the parameter space as we have done.

The observation that promoter-proximal and distal introns
gave different k-mer profiles indicated that introns are structurally
unequal depending on the location of those introns in their genes.
To explore genome-wide differences in intron composition, the
entire set of Arabidopsis introns was randomly divided into two
equal groups. The introns in one group were used to train the
IMEter, which was then used to analyze the introns in the other.
The distribution frequency of IMEter scores forms a bell-shaped
curve centered near zero. When only the first introns from genes are
considered, the distribution shifts to the right (mean score¼ 10.6),

Fig. 14.2. IMEter score is correlated with enhancement.
Copyright The American Society of Plant Biologists and reproduced with permission.
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and virtually all of the highest-scoring introns in the genome are first
introns. The relationship between IMEter scores and location can
be seen more clearly by plotting the scores of introns against their
distance from the start of transcription (Fig. 14.4). Average

Fig. 14.4. IMEter score of introns as a function of distance from their promoter.
Copyright The American Society of Plant Biologists and reproduced with permission.

Fig. 14.3. Optimizing IMEter parameters.
Copyright The American Society of Plant Biologists and reproduced with permission.
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IMEter scores are highest in introns near the start and decline with
distance, and very few introns more than 1000 nt from the start
have a positive score. This pattern is in striking agreement with the
ability of an intron to stimulate mRNA accumulation, which also
declines with distance from the promoter until it is lost entirely
between 550 and 1100 nt from the start of transcription.

4.1. Identifying

Enhancing Sequences

One drawback of analyzing word frequencies is that the biological
signals that give rise to high scores are not immediately apparent.
To identify candidate sequences involved in IME, we employed a
motif-finding algorithm, NestedMica (9), to find sequence pat-
terns that are over-represented in the 100 introns with the highest
IMEter scores. Several motifs were found, and these were ranked
by how well they correlated with the set of introns with known
effects on expression. This analysis was therefore very similar to
that shown in Fig. 14.2, except that a combined motif score was
used in place of the IMEter score. The motif that was most
correlated with observed enhancement is shown in Fig. 14.5,
and we call this the IME motif.

Rather than evaluating an entire intron, one can also look for
regions of high IMEter score in genomic context by calculating
IMEter score in a fixed, sliding window. Figure 14.6 shows that
high scores are most abundant in the intron and occur in the same
regions as high IME motif density. While there is a great deal of
variation from gene to gene, the general pattern is for IME signals
to be concentrated in proximal introns and virtually absent from
other regions of the genome.

4.2. IME Signals in

Other Species

The IMEter can be applied as described to any organism where
there are known exon–intron structures for a few hundred genes or
more. Unfortunately, there are no organisms aside from Arabi-
dopsis where the IMEter can be quantitatively evaluated because
rigorous intron-swapping experiments have not been performed
elsewhere. It remains to be established whether or not promoter
proximity is relevant to IME in all organisms. Furthermore, the
IMEter may be ineffective in species in which introns are very large
in size (as in mammals) or small in number (as in Saccharomyces
cerevisiae). Given the aforementioned caveats, we have examined

Fig. 14.5. IME motif.
Copyright The American Society of Plant Biologists and reproduced with permission.
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IME signals in rice and find that a rice IMEter behaves similarly to
the Arabidopsis IMEter (data not shown, see (6)). We also find
that there is a good correlation (R2 0.74) between rice-trained
IMEter scores and Arabidopsis expression values, which indi-
cates that the IME machinery may be very similar in these
organisms.

5. Summary

The IMEter illustrates some of the strengths and weaknesses of
word-based algorithms. On the positive side, the IMEter revealed
previously unsuspected differences in the composition of introns, a
large collection of very diverse elements. No prior assumptions
about the length or positions of the relevant sequences were
required. However, word frequency analysis is not the appropriate
method for all sequence elements. IME signals are both dispersed
and redundant, so there was a good fit between the biological
signals and the statistical model. If we had been looking for an
isolated signal where position was an important factor, for example
the TATA box, one would not expect word frequency analysis to
be very useful.

Fig. 14.6. IMEter score and IME motif density in the UBQ10 region. The genomic region of
the UBQ10 gene is shown. The exon–intron structure is shown at the top. The dark
regions are untranslated, and the light regions are coding. The middle panel shows the
score of the IME motif. Higher bars indicate a better match to the consensus. The lower
panel shows IMEter score in a 50 bp window.
Copyright The American Society of Plant Biologists and reproduced with permission.
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Perhaps the most serious weakness of word-based analyses is
the difficulty in identifying the functional elements that are being
recognized from among the entire dictionary of words. A number
of statistical measures can be employed, but ultimately the biolo-
gical significance of any candidates must be evaluated experimen-
tally. Despite the inherent limitations in word-based analyses, they
can be very useful tools for the systems biologist because they
provide a means to detect previously unrecognized patterns in
complex sets of data, thereby revealing new connections. While it
is expected that more sophisticated statistical models (e.g., hidden
Markov models) and experimental molecular biology (e.g., gene
expression studies, proteomics) are required to identify the biolo-
gical entities involved, word-based analyses can provide a critical
first step for the journey ahead.
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Chapter 15

Live-Imaging and Image Processing of Shoot Apical
Meristems of Arabidopsis thaliana

G. Venugopala Reddy and A. Roy-Chowdhury

Abstract

The shoot apical meristem (SAM) of higher plants represents a dynamic network of different cell types
which exhibit distinct patterns of gene expression and cellular behaviors. The regulation of distinct patterns
of gene expression and cellular behaviors is mediated by cell–cell communication networks. Live-imaging
of spatiotemporal dynamics of cell–cell communication networks, gene expression patterns, and cellular
behaviors is critical to deduce principles that underlie SAM growth and maintenance. In this chapter, we
describe live-imaging methods, fluorescent reagents, and image processing protocols that have been
developed to visualize the regulatory dynamics of SAM growth in Arabidopsis thaliana.

Key words: Fluorescence, stem cells, real-time imaging, image segmentation, 3D reconstruction, cell
lineage, cell tracking.

1. Introduction

Pattern formation and stem-cell maintenance in the shoot apical
meristems (SAMs) of higher plants involve co-ordinated regula-
tion of gene expression and growth (1). In Arabidopsis thaliana,
the SAM stem-cell niche consists of approximately 500 cells (5 mM
each in size) organized into three clonally distinct layers of cells.
The SAM is further subdivided into distinct functional domains (2).
The central zone (CZ) is located at the tip and it contains a set of
stem cells. The progeny of stem cells enters into differentiation
pathways when they enter the surrounding peripheral zone (PZ).
The CZ also supplies cells to the rib meristem (RM) located
beneath the CZ and the RM cells differentiate and become part
of the stem. Thus, cell fate specification within SAMs is a dynamic
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process in which transient changes in gene activation/repression
and changes in growth patterns are tightly coupled in both space
and time. Therefore, visualization of gene expression and growth,
in real time, by employing live-imaging methods may provide new
insights into the dynamic interaction between growth and cell fate
specification mediated by cell–cell communication (3). Recent
studies have attempted to understand the dynamic spatiotemporal
contours of cell–cell communication networks and that of patterns
of gene expression and cell behaviors in living SAMs (4–9). This
effort has involved the development of new live-imaging methods,
new fluorescent reporter lines, and image processing protocols. In
this chapter we discuss the live-imaging methods and image pro-
cessing methods that have been developed to study the SAMs of
A. thaliana.

2. Materials

1. Ziess 310 or Zeiss 510 upright confocal microscope with
multi-channel imaging capability

2. 63X achroplan water dipping objective lens (0.95 NA; Zeiss)

3. Clear plastic boxes (Part #: DG-0720; http://www.dur-
phypkg.com/)

4. A pair of fine tweezers (#5 INOX; Dumont)

5. 1.5% agarose

6. Sterile water

7. Transgenic plants with appropriate fluorescent constructs

8. Fluorescent dyes such as FM 1-43/FM4-64 (50 mg/mL;
Molecular probes) series.

9. Microscopy platforms: Care should be taken to preserve the
integrity of the specimen and at the same time acquire images
at sufficiently high signal-to-noise ratio to achieve the
required spatial and temporal resolution. The cell-type speci-
fication and cell divisions in the A. thaliana SAM occur over a
period of several hours and can therefore be reliably recon-
structed by imaging at intervals of hours using conventional
confocal scanning microscopes (4–7). The 3D nature of
SAMs imposes a severe limitation on achieving the required
spatial resolution from images that are taken at deeper layers.
Multi-photon imaging systems have been shown to yield
better spatial resolution than confocal systems; however, the
two-photon imaging is surprisingly toxic to SAM cells (10,
11). Objective lenses with higher light-gathering ability can
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improve spatial resolution; for example, 63X water dipping
achroplan lens with 0.95 numerical aperture (Zeiss), which
has a working distance of 2 mm, can be employed to acquire
better quality images. Taken together, SAMs can be imaged
by using a Zeiss 310 or Zeiss 510 upright confocal micro-
scope fitted with a 63X water dipping achroplan lens.

10. Plant growth and plant care: Plants are germinated on MS-
agar plates and allowed to grow for 10 days before transfer-
ring them into clear plastic boxes containing MS-agar. The
plants are maintained in aseptic conditions until bolting.
Upon bolting, when the shoot apex emerges out of the
rosette, the plants are prepared for live-imaging (see next
section). Clear plastic boxes (Part #: DG-0720; http://
www.durphypkg.com/) are filled with water to submerge
the plant prior to each imaging session, which can last for
30s–1 min. The water is then discarded and the plants are
returned to normal growth conditions. This process is
repeated for different imaging intervals as required.

11. Cellular dynamics markers: The main tools for fluorescence
imaging of SAM cells and gene expression include proteins
with intrinsic fluorescence such as green fluorescent protein
(GFP) and its derivatives and analogous chromophore-con-
taining proteins. Several guides are available to choose appro-
priate fluorescent proteins, based on their brightness,
photostability, rate of protein maturation, oligomerization,
and for the use in multiple labeling experiments (12, 13).
Several fluorescent protein chimeras have been described to
follow cellular dynamics within the SAMs. Plasma membrane-
localized YFP (35S::YFP29-1) is an EYFP fused to a protein
tag which targets the protein chimera to the plasma mem-
brane and therefore it has been used to follow cell expansion
and cell division patterns (4, 14). Protein chimera consisting
of mYFP fusion to Histone2B (35S::H2B:mYFP) localizes to
chromatin and hence it has been used to monitor nuclear
divisions (15). CyclinB1;1:GFP is a chimeric protein between
GFP and a mitotic cyclin expressed under native cyclin pro-
moter. The fusion protein is expressed in cells that undergo
G2-M transition, and it can be used as a marker to follow cells
that are about to enter or in the process of division (4).
Alternatively, the water-soluble lipophilic dyes such as FM1-
43 and FM4-64 can be directly applied to the SAMs to high-
light the cellular boundaries and thereby to follow cell divi-
sion dynamics (5)(see Note1). However, the major limitation
in using theses dyes is that they are progressively taken up by
cells and therefore it becomes impossible to follow cellular
outlines beyond 12–24 h. Among all the markers described,
the plasma membrane marker is an ideal choice because both
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cell expansion and the cell division events can be scored long
after the actual event has occurred. In addition, an extensive
collection of fluorescent protein tags, which target different
intracellular compartments of plant cells, have been described
and can be found at http://deepgreen.stanford.edu/
index.html.

12. Markers for gene expression dynamics: The choice of type of
fluorescent protein construct is primarily based on the biolo-
gical questions being investigated. Fluorescent proteins
expressed from native promoter elements of individual
genes form the basis for live-imaging of gene expression and
cellular identity transition within the SAM (6, 7). Alterna-
tively, protein dynamics can be followed by using protein
chimeras in which a protein of interest is fused to a fluorescent
protein and expressed from its native promoter (7). Several
cell-type-specific fluorescent constructs and fluorescent pro-
tein chimeras have been described for live-imaging SAMs (7).
The cell-type-specific or tissue-specific enhancer trap lines
(http://www.plantsci.cam.ac.uk/Haseloff) have also been
generated and they should form an excellent resource for
live-imaging.

3. Methods

3.1. Preparation of

Plants for Live-Imaging
Plants are germinated on MS-agar plates and allowed to grow for
10 days before transferring them into clear plastic boxes contain-
ing MS-agar (4, 7). The plants are maintained in aseptic conditions
until bolting. Upon bolting, when the shoot apex emerges out of
the rosette, the plants are ready for live-imaging. Prior to imaging,
the MS-agar surface is overlaid with 1% agarose to minimize con-
tamination as this would prevent the exposure of nutrient surface.
The older floral buds are carefully removed by using the tweezers
so as to expose the SAM. Molten agarose (1.5%) is applied onto the
stem so that it makes a continuous agarose block to anchor the
rosette to the base and thus stabilizes the rosette. Care should be
taken to avoid covering the tip of the SAM with agarose as this
would cause a drastic reduction in signal intensity of fluorescence
images. The plastic boxes are filled with water to submerge the
plant prior to each imaging session, which can last for 30s to 1 min
depending on the scan rate. The water is then discarded and the
plants are returned to normal growth conditions. This process is
repeated for imaging intervals as required for individual experi-
ments. The plants continue to grow during imaging which can last
for 3–5 days. Therefore, they have to be augmented with fresh
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supply of agarose; the growing flower buds have to be removed so
that the light path is devoid of any physical obstacles. Therefore,
the process of live-imaging of SAMs is an interactive session which
requires constant attention and adjustments.

3.2. Plant Performance

During Live-Imaging

and Validation of

Imaging Data

Since the older flower buds are removed prior to imaging and
the plants are imaged repeatedly, it is essential to assess the
performance of plants during imaging. In some cases, dissecting
the early-stage floral buds can result in desiccation and such
plants are easy to recognize and are removed from experiments.
The vertical growth of the plant is also a good measure of plant
health and it can be verified at the end of each imaging session
by recording the growth in the Z-axis and the plants that stop
growing will have to be discontinued from imaging further. In
some cases, the plants continue to grow but exhibit a gradual
decrease in the SAM size and they need to be excluded from the
analysis. It is also essential to test whether the imaging condi-
tions had any adverse effect on the meristematic activity and this
can be done by comparing the live-imaging data with growth
patterns deduced from non-invasive methods (4). In general,
the total duration of imaging varies with the imaging intervals.
The plants imaged at shorter intervals such as 1–1.5 and 3 h can
survive for only 40–66 h, whereas the plants imaged at longer
intervals such as 6 or 12 h can survive for about 5 days. How-
ever, this survival period is applicable to experiments wherein
only a single laser line is used for exciting fluorophores and the
total survival period will be much shorter when multiple laser
lines are used.

3.2.1. Optimization of

Imaging Conditions for

Live-Imaging

a. Single color live-imaging: The cell division dynamics of SAM
cells can be followed by single color imaging of plants carrying
35S::YFP29-1 or 35S::H2B:mYFP. YFP can be stimulated with
an argon laser at 515 nm at 25–50% of its output and by using
neutral density filters at 4–7% to attenuate the laser line. The
emission can be filtered by using 530–590 nm band-pass filter.
For example, an ideal Z-stack can be acquired by using 1s scans
of a 512 � 512 pixel frame consisting of a total of 30 optical
sections sliced approximately 1.5 mm in thickness. Illuminating
the specimen with appropriate amount of laser is critical to
maintain healthy plants. Therefore, it is desirable to achieve
required spatial resolution of images without increasing the
laser power. This can be achieved by altering the amount of
light collected through adjustments in PINHOLE aperture and
by electronically increasing the detector sensitivity. Alterna-
tively, several other strategies can be employed to increase the
brightness of fluorescence constructs used for live-imaging (see
next section).

Live-Imaging of Shoot Meristems 309



b. Multi-color live-imaging: The fluorescent proteins with distinct
excitation and emission wavelengths can be employed to label
multiple cell types of SAMs or multiple proteins and follow
them simultaneously by using multi-spectral imaging (6, 7).
Spectrally distinguishable fluorescent proteins expressed from
native promoter elements have been employed to follow specific
gene expression patterns and cellular identity in the SAMs (6, 7).
Alternatively the protein chimera in which a protein of interest is
fused to a fluorescent protein and expressed from native pro-
moter has been used to follow protein dynamics (7). The major
challenge in multi-spectral imaging is to achieve a balance in
signal intensities between different fluorescent proteins in order
to minimize bleed-through of signals into inappropriate chan-
nels. Several approaches can be tried out to solve the problem.
The brightness of fluorescent proteins should be considered in
using them with appropriate promoters so that the fluorescent
proteins with higher quantum yield can be used in conjunction
with weakly expressed promoters. Multimerized versions of
fluorescent proteins consisting of 2X or 3X tandem repeats or
multimerized constitutive promoter along with a translational
enhancer can provide higher signal intensity (7, 16). Alterna-
tively, targeting of fluorescent proteins to specific intracellular
compartments can increase its brightness (16).

For example, GFP and dsRED combination and GFP and YFP
combinations have been imaged simultaneously by using multi-
tracking option. This option allows switching between appropriate
laser lines, the primary and secondary dichroic settings after every
X–Y scan. Further details of multi-channel imaging of SAMs can be
found in recent studies (6, 7).

3.3. Visualization and

Image Analysis

A need for image processing platform has been emphasized to
address several biological questions: first, to visualize 3D cellular
shapes and sizes, measurement of concentrations of individual
proteins of interest in a given 3D cellular volume; second, to
understand the relationship between cell deformation dynamics,
cell expansion patterns, and cell division orientation; third, to trace
cell lineages by tracking the progeny through successive cell
divisions with an aim to understand the causal link between cell
division patterns and morphogenesis; and fourth, to explore the
inherent variability in local cell division patterns and its influence
on gene expression patterns and morphogenesis. The rules
deduced from these analyses can also be applied, in the long run,
in generating integrated and dynamic maps of development
consisting of gene expression patterns and growth dynamics.

The following are the specific image processing (IP) and ana-
lysis tasks that are needed to analyze SAM imagery. A number of
image analysis methods have been described and they can be useful
in automatic analysis of image sequences. However, the IP is not a
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one-way street whereby existing methods can be applied directly to
analyze SAM imagery. In fact, SAMs presents a number of unique
challenges which necessitates development of new methods which
in turn would lead to significant new developments in the image
processing area. Some of the main tasks, the challenges, and pos-
sible strategies in analyzing the SAM imagery are highlighted
below. The following section is slightly speculative as an effort
has been made to predict possible strategies and future research
directions that would be useful. Therefore, some of it should be
taken as a pointer to existing work in other image processing
applications and their usefulness in analyzing SAM imagery.

3.3.1. Image Registration The time series of confocal Z-stacks requires to be aligned, and the
3D alignment can be done by using available software packages
which utilize information theory to maximize mutual information
across image stacks to register images at sub-pixel resolution (17).
The 3D registration/alignment can also be done by using appro-
priate image registration module in commercial software packages
such as AMIRA (Visage Imaging). The registered stacks can then
be reconstructed in three dimensions, rendered and animated to
play continuous movies by using the Zeiss LSM3.2 software (4).
The cells in the L1 layer, located at various depths on the curved
surface, are projected onto a single 3D-reconstructed view by
using maximum intensity projection.

3.3.2. Segmentation,

Representation, and

Visualization of 3D Cell

Shape

This is the most basic step that will enable rest of the image
processing tasks. The main challenge is to determine a robust
method for extracting the 3D space of individual cells, visualize
connections between individual cells of the SAMs, and represent
them by using a suitable shape descriptor.

Four-dimensional fluorescence image stacks in which cell out-
lines are labeled with yellow fluorescent protein (YFP) marker to
track cellular dynamics can be used as an input for computationally
segment cells. Cells of the SAM are isodiametrical in shape and
each one of them measures about 5 mM in size. Therefore, a single
cell is captured approximately three times when sliced at a thick-
ness of 1.5 mM along their Z-axis. Existing image segmentation
algorithms can be employed to segment individual cells from a
registered 2D image stacks of SAMs. Existing level set-based
methods work very well when applied to a single 2D layer
(Fig. 15.1). The segmentation protocol can be repeated for each
layer separately and then the correlation between individual layers
can be established by combining segmented 2D stacks, using a
region growing procedure starting from the topmost layer (18).
The net result of this effort will be the identification of 3D profiles
of cells across layers and visualization of the connections between
individual cells in a 3D space. Different shape descriptors have been
described and they can be useful for this representation (19, 20).
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The isolation of the 3D structure of the cell within a given space will
enable biologists to analyze the geometrical constrains of individual
cells in a multicellular field and that would lead to quantitative
understanding of relationship between individual cell shapes/sizes
and the organ shape/size. Accurate estimation of cellular volumes
will also be useful in measuring concentrations of individual pro-
teins of interest within cells.

3.3.3. Three-Dimensional

Tracking of Cells and Cell

Divisions

The tracking of cells through successive cell divisions within
the SAMs will allow reconstruction of individual lineages and
this is essential to understand the dynamic interplay between
growth and gene expression changes. Cells undergo continu-
ous deformations and exhibit topology changes during their
growth. Therefore, the tracking algorithm must be robust to
accommodate both cellular deformations and cellular topology
changes.

Tracking methods have been developed and they work well for
individual 2D layer (21, 22). A 2D annealing method for tracking
individual cells in a growing bacterial colony has been shown to
produce reliable tracks (21). An independent study has documen-
ted a method for 3D modeling, visualization, and analysis of the
cells in the reconstructed surface layer (L1 layer) of the Arabidopsis
SAMs (22). However, new methods will have to be developed to
track individual cells in 3D space and across time.

Fig.15.1. Computational segmentation of a multi-layered SAM, labeled with ubiquitously
expressed plasma membrane-localized YFP (35S::YFP29-1). The imaging data from
35S::YFP29-1 has been used to computationally segment cells. (A–F) Results of
segmentation for two consecutive Z-sections from the SAM taken at three different
time instances are shown. Consistency in the segmentation across the layers will help in
tracking and identifying cell divisions even if some of the segmentation results are
erroneous.
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Cell divisions can be modeled by combining methods that can
handle cellular deformation dynamics and changes in topology
during cell division (23). Similar approaches have been used in
human motion modeling, but the dynamical models for cell devel-
opment may be different and therefore identification and estima-
tion of such models can be challenging (24, 25). To identify and
track changes in topology, level set-based approaches can be used.
The desired output of this procedure should be to obtain corre-
spondence between individual slices of a 3D cellular volume across
time. Tracking the cells and identifying cell divisions between two
time instants will enable biologists to analyze the relationship
between cell deformation dynamics, cell expansion patterns, and
cell division orientation.

3.3.4. Long-Term Tracking

for Identifying Cell Lineages

The computational extraction of cell lineages requires identifica-
tion of cells and tracking their progeny through successive cell
divisions. A major challenge is to maintain consistency in the tracks
over long periods of time. This is because a single mistake in
tracking between two consecutive frames can lead to a completely
erroneous track (lineage) later in time.

The goal here should be to developing inference strategies for
identifying mistakes in the tracking result by assimilating multiple
two-frame tracking results. Thereafter the tracking algorithm
should be able to automatically correct the mistakes through a
self-correcting procedure. This should be a significant research
task from the image processing aspect. A possible approach
includes representation of each 3D cell by a node on a graph
with two-frame correspondences as edges of this graph. One can
consider the tracks on this graph till a certain time point and then
compute some long-term biological properties that would provide
an estimate of the correctness of the tracks. Such long-term prop-
erties could include the morphogenic events within the SAMs such
as periodic spatiotemporal appearance of bulge formation/exten-
sion of certain regions of the SAM leading to the outgrowth of
differentiating organs and the appearance of regions of limited cell
expansion leading to the formation of boundaries that sepa-
rate differentiating organs from the SAM. This process may
help in inferring whether the mistakes have been made and
may also identify the locations of the mistakes. Thereafter, a
process can be implemented to update the graph till a certain
biologically inspired criterion is met. It has been recently
shown that such an adaptive strategy is applicable in tracking
objects reliably over a camera network (26). The ability to
track cells and their progeny over extended periods of time
will enable identification of cell lineages through successive
cell divisions from large volumes of image data acquired to
explore the causal link between local cell division patterns and
morphogenesis.
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3.3.5. Learning Dynamical

Models of Cell Lineage

Patterns

The experimental evidence indicates that the cell division patterns
are not entirely stereotypic both within a given SAM and across
different SAMs of Arabidopsis except for a local co-ordination in
which three to four adjacent cells divide simultaneously (4).
Therefore the challenge is to understand how an invariant pattern
(both the gene expression pattern and organogenesis) develops
from non-stereotypical cell division patterns. The computational
challenge in achieving this is to learn models that describe the
growth patterns of a cell lineage that contribute to organogenesis.

The tracked cell lineages can be used to learn models for
describing the variations of cell growth patterns within a given
SAM and between SAMs of given species. This includes variations
in the cell division rates and orientations of cell division. Prior
work in human activity analysis from video sequences provides
some pointers to future research possibilities. For example, it is
possible to learn a function space for walking or running by
considering variations between different people (27). A similar
concept can be used to represent the cell lineages by using a
nominal pattern and learning the variations around that pattern
as a function space. This function space will provide a mathema-
tical description of all possible variations of the cell growth
dynamics between different plants as well as within a plant.
Once this representation is obtained, extent of similarities and
dissimilarities between different cell lineages can be computed
within this function space. Since this approach requires comput-
ing distances between dynamic patterns, measures like dynamic
time warping (DTW) will have to be considered. These learned
models can also be incorporated into the tracking algorithms
later, thus making them robust to variations. This would allow
biologists to explore the inherent variability in local cell division
patterns and its influence on gene expression patterns and orga-
nogenesis. The rules deduced from this analysis can also be
applied, in the long run, in generating integrated and dynamic
maps of development consisting of representation of gene
expression patterns and growth dynamics.

4. Notes

1. Alternative live-imaging setup has also been described (5). This
method is suitable for imaging SAMs by using an inverted micro-
scope. This method requires the use of napthylphthalamic acid
(NAA) treatment of plants at 10�5–10�6 M concentration since
germination, so that it leads to the development of naked inflor-
escence which can be imaged without any interference from devel-
oping flower buds. The naked SAMs are examined using TCS-NT
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confocal laser scanning microscope (Leica, Heidelberg, Germany),
with an argon/krypton laser (Omnichrome, Chino, CA) mounted
on inverted DM IRB microscope (Leica).
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Chapter 16

Computer Vision as a Tool to Study Plant Development

Edgar P. Spalding

Abstract

Morphological phenotypes due to mutations frequently provide key information about the biological
function of the affected genes. This has long been true of the plant Arabidopsis thaliana, though phenotypes
are known for only a minority of this model organism’s approximately 25,000 genes. One common
explanation for lack of phenotype in a given mutant is that a genetic redundancy masks the effect of the
missing gene. Another possibility is that a phenotype escaped detection or manifests itself only in a certain
unexamined condition. Addressing this potentially nettlesome alternative requires the development of more
sophisticated tools for studying morphological development. Computer vision is a technical field that holds
much promise in this regard. This chapter explains in general terms how computer algorithms can extract
quantitative information from images of plant structures undergoing development. Automation is a central
feature of a successful computer vision application as it enables more conditions and more dependencies to be
characterized. This in turn expands the concept of phenotype into a point set in multidimensional condition
space. New ways of measuring and thinking about phenotypes, and therefore the functions of genes, are
expected to result from expanding the role of computer vision in plant biology.

Key words: Computer vision, morphometrics, plant development, image processing.

1. Introduction

Late in the nineteenth century, Gregor Mendel made his now famous
use of morphological phenotypes of pea mutants to uncover the basic
laws of inheritance, which led to the discovery of genes. Now in the
twenty-first century, morphological phenotypes are still an important
source of information, sometimes providing critical clues about gene
function. It is difficult to imagine modern plant biology ever not
depending on morphological phenotypes for information. Yet,
despite their key role, techniques for extracting information from
morphology and its development have changed little during the
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lifetimes of most biologists, especially when compared to the
astounding technical advances that have propelled the study of
genomes. It is useful to remember that not long ago, sequencing
DNA required radioactive nucleotides, large cumbersome electro-
phoresis gels, photographic emulsions, film development, and at
least one person to decode the band patterns. Determining the
mRNA level for a single gene was equally complicated, and measur-
ing two different genes was approximately twice the work of mea-
suring one. Now genes are sequenced, manipulated, and studied in
ways that bear little resemblance to the methods used 20 years ago,
thank goodness! On the other hand, morphological development,
which may be considered the output side of a gene function model,
is still likely to be manually measured. No revolution in the study of
plant form or development of morphology has taken place in parallel
with the genomics revolution. Thus, there exists today a large
imbalance between the degree of sophistication with which genes
and phenotypes are investigated, despite phenotype development
being a deep source of information about gene function. To extract
the most information about gene function from mutants and from
natural variation observed in plant populations, advanced methods
of studying the development of plant morphology and behavior are
required. To be maximally effective, the methods should be auto-
mated and have high spatiotemporal resolution to serve purposes
described below. This chapter outlines a computer vision approach
designed to raise the sophistication of plant development studies.

Computer vision refers to artificial systems that obtain informa-
tion from images (1). A related term is machine vision, which usually
includes the engineering topics of motion-control hardware and soft-
ware and carries less the connotation of using technology to replace
the human sense (2). Wikipedia contains excellent entries that will
assist a reader interested in learning more about computer vision,
machine vision, and distance transforms. Regardless of the term, the
goal is much the same – to extract and quantify information about the
size and shapes of objects from digital images using computer algo-
rithms and mathematics, which may be borrowed from the related
fields of pattern recognition and signal processing. The images can be
single frames, such as a fingerprint to be analyzed for identification
purposes, or the images can come in the form of a time series or movie
that covers a developmental process from which time-dependent
changes are quantified.

2. Image Data
Acquisition

The input data in its rawest form are pixels (electronic picture
elements). The number of pixels in an image is typically on the
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order of 106. If the image is 8-bit grayscale, each pixel is repre-
sented by an intensity value between 0 (code for black) and 256
(code for white). Thus, a grayscale image is actually an x,y array or a
grid of 106 numbers ranging between 0 and 256. Relatively inex-
pensive electronic cameras employing charge-coupled device
(CCD) sensors and interfaced with a standard computer can
acquire such images at programmed time intervals. When
equipped with an appropriate lens, these CCD cameras are suitable
for monitoring aspects of plant growth and development.
Although acquiring the electronic images is relatively straightfor-
ward from a technical standpoint, the following issues require
some thought and planning in order for the images to be most
conducive to accurate analysis.

a. Spatial resolution on the order of a few microns is readily
achievable with lenses and cameras commonly used in industrial
machine vision applications. However, high resolution comes at
the expense of field of view. High spatial resolution may mean
that only one object can be accommodated in the field of view,
and the object may grow out of the field of view too soon.
Zooming out increases the field of view, but the object will be
represented by fewer pixels (i.e., each pixel represents a larger
real area). The experimenter must decide what balance of spatial
resolution versus field of view is appropriate for the experiment.
Zoom in for high detail over short periods of time. Zoom out
for longer observation periods, potentially of more objects, but
with lower spatial resolution.

b. Maintaining focus during the experiment is important. Depth
of field is typically so shallow that sharpness of focus degrades
if the object is allowed to move much along the optical axis
(z-direction). Yet constraining the object to the plane of focus
may interfere with the biology under study. One method that
works well with seedlings is to culture them on the surface of a
vertical agar plate. Adherence of the seedling to the medium by
surface tension constrains the seedling to the 2D plane without
undue interference. A much more complicated (and computa-
tionally intensive) but potentially much more informative solu-
tion would be 3D imaging of unrestrained organisms. Such
techniques will not be covered in this article.

c. Consistent and high contrast between the object and the back-
ground facilitates all subsequent steps. The desired image qua-
lities are achieved by judicious choice of optics and adequate
lighting of the sample. However, light is one of the strongest
environmental influences on plant development, which creates
a potential conflict between image acquisition requirements and
biological considerations. One proven solution is to use infrared
radiation to acquire the image. Plants do not sense infrared
wavelengths in the 800–900 nm range but CCD chips do
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(after removing the internal infrared filter found in most CCD
cameras). For experiments that require the ambient light to be
changed during the experiment, such as in de-etiolation studies,
a long-pass filter mounted over the lens allows the infrared to
create the image on the sensor but prevent changes in the visible
wavelengths from affecting the image. The infrared illumina-
tion/long-pass filter technique has also been used in image-
analysis studies of rhythmic phenomena.

3. Segmentation
and Feature
Extraction

After the process of interest is captured in a series of electronic
images, the next task is to extract useful information. The best
approach to take depends upon the shape of the organ or structure
under study. For example, an ovate leaf like that of Arabidopsis
might be usefully described by the combination of its area, major
axis (longest straight line within the object), and minor axis (long-
est straight line perpendicular to the major axis) as shown in
Fig. 16.1A and B. The ratio of these two axes, known as eccen-
tricity, could be a useful single-value shape descriptor. An elon-
gated structure such as a stem or a root may be best described by
the length and shape of its midline, technically known as the
medial axis (Fig. 16.1C and D). For any given descriptor, there
are usually multiple image processing means to the same end, each
with its own set of advantages and disadvantages. To illustrate this
point, the example of finding the midline of a hypocotyl image will
be considered. The grayscale image of etiolated seedlings a few
millimeters in length (Fig. 16.2A) is readily separated from the
white background by a thresholding operation that replaces every
pixel having a gray level value lower than a certain threshold by 0
(black) and every pixel above that threshold by a 1 (white). The
image is said to be binarized and the object of interest segmented
from the background. All black pixels belong to the object of
interest and all the white pixels belong to the background
(Fig. 16.2B). One strategy for finding the midline entails eroding
away the black pixels from the outside iteratively until the least set
of contiguous black pixels remains. After some refinement, the
coordinates of this pixel set define a midline. Another method of
finding the midline of the seedling shown in the figure employs the
Euclidean distance transform (3). Each pixel within the object is
mapped to its nearest contour point. The distance between each
point and its nearest contour point is calculated. If mapped onto the
object image, the distance values form a ‘‘ridge’’ that runs the length
of the seedling with the highest values (local maximal distances from
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Fig. 16.1. Simple morphology descriptors. (A) The shape of a leaf like that of an
Arabidopsis rosette may be adequately described by the combination of its major axis
length and perpendicular minor axis length, in addition to its area. (B) Determining even
simple shape parameters from images is complicated by real conditions such as overlap
of one leaf by another. (C) The primary root is well described by its medial axis, or
midline, but after a few days of growth, the Arabidopsis root system begins to branch,
which complicates midline finding. (D) Again, real conditions such as overlapping lateral
roots pose image-processing challenges that must be overcome in order to make
computer vision a useful tool in plant functional genomics studies.

Fig. 16.2. Determining the midline. (A) An unprocessed grayscale image of an etiolated
Arabidopsis seedling. (B) Binarized image following a thresholding operation to isolate the
object of interest from the background (image segmentation). (C) A portion of the hypocotyl
midline as determined by Euclidean distance transform or by erosion, two different skeletoniza-
tion methods. (D) Smoothing achieves the desired result, a set of points that faithfully captures
the length and shape of the object, in this case the hypocotyl. Further analysis is performed on
this set of midline points to determine parameters such as length, local curvature, and angle.
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the contour) defining the midline. Because the contour of the
object is not smooth, the midline determined by either of the two
mentioned methods will not be smooth. From the enlarged portion
of the hypocotyl with midline superimposed (Fig. 16.2C), it can be
seen that the length of a jagged midline is longer than the true
midline of the structure. Also, local curvature is extremely sensitive
to noise in the midline. To obtain accurate measurements of these
main determinants of midline shape (length and local curvature), a
noisy or jagged midline must be smoothed (Fig. 16.2D). Miller
et al. (4) employed a local filter that processes along the distance
transform peak in one-pixel-sized steps to obtain a smoothed,
ordered set of midline points. This process is repeated for each
frame in a time series. The result is a time series of smoothed midline
point sets. Each individual midline can be analyzed separately and
compared to the previous, or the entire time series of midline point
sets can be treated as a surface and analyzed with differential geo-
metry techniques to extract features such as local curvature, total
length, growth rate, or angle (integrated curvature) as previously
described (4), a webpage that details how to assemble an image-
acquisition apparatus for studies of plant growth and development is
http://phytomorph.wisc.edu/parts_list.htm). The many different
approaches for extracting the relevant information are not discussed
here to avoid obscuring the main point, which is that a complex
biological process captured in image sequences (many hundreds of
megabytes) can be distilled down to a time series of midline point
sets (a few kilobytes) that is amenable to mathematical analysis and
quantification.

4. An Example of
Gravitropism

Gravitropism is a classic response that has been investigated with
computer vision techniques. A generalized treatment will show
here how a computer vision approach differs from the more com-
mon methods of investigation. As shown in Fig. 16.3, the initial
condition is a straight root rotated horizontally to initiate the
response. Typically, a measurement of root tip angle is made
some time later (an endpoint measurement) by manually deter-
mining the angle formed by ‘‘before’’ and ‘‘after’’ lines drawn
through the apex on an electronic image to approximate the tip
angle. Computer vision provides an alternate description of the
phenomenon. Analysis of a time series of images would produce a
family of midlines that collectively describes this classic response of
development to an environmental signal in more detail. Growth
rate, tip angle, and distribution of curvature along the root axis can
all be determined as a continuous function of time from the family
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of midlines depicted as dotted curves in Fig. 16.3. When images
are taken every 2 min and when each pixel represents 5 mm of
tissue, a very detailed depiction of the process emerges.

5. Expanding the
Concept of
Phenotype with
Computer Vision In addition to providing high spatiotemporal resolution, the com-

puter vision approach brings automation to the quantification of
development. Automation enables higher throughput because
analysis is no longer the rate-limiting step and acquisition can be
made parallel (either through simultaneous operation of multiple
image acquisition stations or moving a camera sequentially
through an array of samples with a robotic device). The combina-
tion of parallel acquisition and automated analysis expands the
scope of a typical investigation of phenotype development. Rather
than a snapshot of a process in a given condition, studies of devel-
opment over time in an array of conditions are made possible by
automation and parallel acquisition. This could lead to the discov-
ery of novel aspects of mutant phenotypes or natural variation that
are not apparent and may be difficult (or even impossible) to detect
in a single-culture scenario. For example, a mutation may have no
significant effect on resistance to salt or on growth during water
stress. But behavior different from wild type may be observed in
that mutant if it and the wild type were cultured and examined
with high resolution in a grid of three salt by three water potential
conditions. How the mutant responds to salt as a function of water

Fig. 16.3. Capturing development with a time series of midlines. The midline of a root
placed on its side is initially straight. After several hours, it has reoriented by almost 90�.
An endpoint measurement of tip angle provides no information about how that endpoint
was reached. Analyzing a family of midlines extracted from images acquired every few
minutes yields a much richer description of the gravitropic response. The impact of
genetic variation on growth control, auxin response, and signal transduction mechan-
isms may have informative though subtle effects on the process of gravitropism that
cannot be captured in an endpoint measurement.
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status may be significantly different from wild type even though a
standard salt or water stress test did not reveal a phenotype. The
key to discovering such a condition-difference phenotype is high-
resolution/high-throughput phenotyping technology. High
resolution is necessary because a difference between genotypes at
any single point on the condition grid may be subtle (though
significant in terms of success in the wild); high throughput is
necessary because even the simple example just stated requires
nine different water potential/salt concentration conditions to
be assayed many times to characterize each population. Machine
vision technologies can deliver that combination of resolution and
throughput. The result is an expanded, multidimensional view of a
phenotype. If the wild-type behavior can be thought of as values
(quantified by computer vision techniques) in a higher-dimension
condition space, a phenotype may be thought of as an altered
distribution of these values within such a space. To characterize
such a phenotype, the condition space must be surveyed to an
extent that the data distributions within it can be meaningfully
characterized and evaluated using rigorous statistical criteria. With
25,000 genes in the Arabidopsis genome, many genes may be
expected to play roles in adaptation, hence shaping the limits of
phenotypic plasticity, or determining how a response is modulated
according to changes in conditions. Their phenotypes may only be
detectable when the development is assayed under a range of
conditions. Automated high-resolution quantification of develop-
ment is expected to be a useful approach to finding key, informa-
tive phenotypes of mutations that appear superficially like wild
type. This brings the argument back to the thesis that automation
and throughput make it feasible to expand and broaden the con-
cept of phenotype.

6. Achieving Higher
Throughput

In principle, there are two ways to increase throughput at a given
resolution. One is to replicate the acquisition apparatus so that
multiple experiments can be performed simultaneously. The tech-
nical challenges to scaling up by replicating or cloning the appara-
tus are minor. A single computer can readily manage acquisition
from multiple cameras sampling at intervals on the order of min-
utes, then pass the images to other machines for analysis and
storage. However, at some point scaling up by cloning is costlier
than the alternative, which is to use a motion-control device to
move a single camera at programmed intervals between an array of
samples. On the other hand, the need to reposition a camera
repeatedly within microns of a previous position over a range
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approximately a million-fold greater creates significant hardware
and software engineering challenges. This robotics approach is
simplified as the resolution requirement is relaxed whereas all
critical technical issues remain constant when throughput is
increased by apparatus cloning.

7. Development to
Be Studied by
Computer Vision

A few specific computer vision studies of wild-type and mutant
plant developmental processes have been effective enough to vali-
date the approach, but for computer vision to become generally
useful and a major element of the functional genomics toolkit,
applicability to many more plant processes will have to be devel-
oped. Two of the more obvious potential applications in the model
plant Arabidopsis include quantification of root system branching
and elaboration of the rosette leaf system (Fig. 16.2.) Quantifying
them in high resolution over time is a tractable problem but
both pose formidable challenges, particularly at the image segmen-
tation phase (separation of object of interest from non-interest).
Rosette development is complicated by the leaves overlapping
(Fig. 16.2B) and root systems, while starting out fairly simple,
become complicated due to crossing and bundling of lateral roots
(Fig. 16.2D). Also, establishing plant culturing systems that
enable the development to be captured in images, keeping in
mind the issues that were raised in Section 2, is usually not
straightforward. Hopefully, as practices and tools improve, the
computer vision approach can be applied in increasingly natural
(meaning increasingly complicated) situations.

8. Large-Scale
Projects

The potential for high throughput in computer vision studies of
plant development makes some large-scale functional genomics
projects possible. For example, phenotype-space characterization
of Arabidopsis T-DNA insertion mutants could add a large amount
of useful information about function for thousands of genes. QTL
analyses and other methods of learning the genetic basis of a
response or process by exploiting natural genetic variation could
proceed much more efficiently and with higher resolution if auto-
mated computer vision algorithms, rather than human eyes, per-
formed the measurements. As more genomes become fully
sequenced, there will be an increasing need to adapt the
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techniques for various species. Perhaps the biggest differences to
accommodate in the near future are those associated with mono-
cot development. For example, there is little in common morpho-
logically between the emergent shoot of dicot and monocot
seedlings, yet the growth and development of both are highly
dependent on orchestration of genetic programs and responses
to environmental signals, and both are critical to determining the
success of an individual in the wild – or a crop in the field. There-
fore, it is not difficult to imagine crop breeders incorporating
computer vision techniques into the process of selecting for subtle
desirable traits.

The morphometric data produced by computer vision techni-
ques are arrays of numbers and are therefore formatted generally
like results from mRNA, proteomic, and metabolomic profiling
experiments. This means that large-scale morphometric data
sets could be included in systems-level computational modeling
studies. Advancing computer vision techniques for studying plant
development to match their potential will enable the formation of
quantitative models that link the genome through its molecular
products to the generation of plant form and behavior.
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Chapter 17

Metabolomics of Plant Volatiles

Anthony V. Qualley and Natalia Dudareva

Abstract

Plants communicate with their surrounding ecosystems using a diverse array of volatile metabolites that are
indicative of the physiological status of the emitter. A variety of systems have been adapted to capture,
analyze, identify, and quantify airborne metabolites released by plants. Metabolomic experiments typically
involve four steps: sample collection, preparation, product separation, and data analysis. To date, two
different types of headspace sampling, static and dynamic, are widely used for volatile metabolome
investigation. For static headspace analysis, solid-phase microextraction (SPME) is used to sample volatiles
while push and pull as well as closed-loop stripping methods are used for dynamic headspace sampling.
After collection, volatile blends are most efficiently and routinely separated prior to analysis using gas
chromatography (GC). Sample preparation is simplified because derivatization is not needed with volatile
metabolites. GC coupled to detection by electron impact mass spectrometry (EI-MS) provides high
chromatographic resolution, sensitivity, compound-specific detection, quantitation, and the potential to
identify unknowns by characteristic and reproducible fragmentation spectra in addition to retention time.
A variety of resources can be used to identify unknown compounds in a given volatile sample including
>600,000 compounds with known mass spectra catalogued in searchable mass spectral libraries.

Key words: Plant volatiles, solid-phase microextraction, static headspace, dynamic headspace, closed-
loop stripping, metabolomics, gas chromatography, mass spectrometry.

1. Introduction

An impressive variety of volatile compounds are biosynthesized
and released into the atmosphere by plants and make up more than
1% of plant secondary metabolites. These compounds are respon-
sible for attracting pollinators and other beneficial insects, provid-
ing a means of inter-plant communication, and directly repelling
or intoxicating attacking herbivores (1, 2). Volatiles are typically
small molecules with low boiling points and high vapor pressure at
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ambient temperature. Unconjugated volatiles can cross mem-
branes freely to be released from flowers, fruits, and vegetative
tissues into the atmosphere and from roots into the soil. To date,
1,700 compounds were identified in the scent of flowers belong-
ing to 90 plant families (3) in addition to 700 flavor volatiles
known to be present in the aromas of fruits and vegetables (4)
with many compounds found in both flowers and fruits.

Plant volatiles are represented by terpenoids, phenylpropanoid,
and benzenoid compounds, amino acid derivatives, and fatty acid
derivatives, which together reflect the diversity of their origins within
the metabolome. Due to the established roles of volatiles in plant
defense and pollination syndromes, exciting opportunities exist for
manipulation of plant volatile profiles with the goal of improving
crop productivity and quality. Enhancing the aroma quality of edible
crops, especially vegetables and fruits, is the common goal of many
breeding and biotechnological programs and is of keen public inter-
est. As a result, much research effort has been dedicated to elucidat-
ing the biochemical pathways responsible for their biosynthesis as
well as in determining their ecological significance.

A key prerequisite to understanding the function and bio-
synthesis of volatiles is the identification of compounds within
the complex mixtures released from different plant tissues under
various physiological conditions. Thus, sensitive yet unbiased
methodologies are needed to provide researchers with compre-
hensive and accurate representations of a plant species’ volatile
metabolome. Metabolomics, as it has been idealistically defined,
involves the isolation of all metabolites from a whole organism,
organ, tissue, or cell type of interest followed by identification of
individual components. However, current methodologies are lim-
ited in their ability to isolate, and even more critically to identify,
many of the compounds present in a given sample (5, 6). In
volatile metabolomics, the process of sample acquisition is greatly
simplified. The emitting plant has already completed the first step,
isolating metabolites away from tissues, by releasing compounds
into the surrounding atmosphere. Researchers only need to tem-
porarily trap these metabolites in such a way that they can be
released unadulterated for separation and identification while
introducing as little bias as possible. A variety of technologies
have been developed over the years. In these methods, the sample
of interest (a plant or its parts) is enclosed in a collection chamber
and the released volatiles present in the airspace surrounding the
sample (headspace) are trapped onto an adsorbent. To date two
different types of sampling, static and dynamic headspace sam-
pling, are widely used for volatile metabolome investigations.
This chapter should serve as a guide to implementation of the
most popular techniques currently in use worldwide by groups
engaged in plant volatile analysis or the study of plant–plant and
plant–insect interactions.
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1.1. Static Headspace

Sampling

Static headspace sampling is a passive technique for volatile collec-
tion where no air circulation is used for concentrating volatiles on a
sorbent matrix. As a result, static headspace methods typically
require specialized techniques that are more successful at concen-
trating airborne volatiles during collection and reduce or eliminate
dilution of sample during desorption and sample preparation. In
addition, background is drastically reduced due to the absence of a
continuous airflow that can contain impurities, masking com-
pounds released at trace amounts. In static methods, plant materi-
als are typically sealed inside a container to retain released volatiles
and the headspace is either sampled directly using a gas-tight
syringe or ad/absorbed to a SPME fiber. SPME is currently the
most widely used method for static headspace sampling and sees
use in an unusually wide range of applications within and outside
of plant biology.

1.1.1. SPME SPME is a robust and sensitive technique for volatile headspace
sampling. It is based on the adsorption of volatiles on an inert
fiber from which compounds can be thermally desorbed inside a
GC inlet. SPME provides detection limits in parts per billion by
volume (5), a sensitivity that is achieved by a concentration of the
analytes on the fiber. SPME sampling is selective because it is an
equilibrium-based technique (7) and fibers are available with
combinations of different coating materials to offer a strategy
for avoiding trade-offs between compounds that may vary in
their affinity to the fiber. Fiber coatings fall into two categories,
liquid polymers of high molecular weight or solids of high por-
osity, and their combination has been shown to be the most
effective at collecting a broader spectrum of compounds ranging
in volatility (8). Compounds trapped by solid-coated fibers are
adsorbed inside pores on the fiber surface whereas in the case of
liquid-coated fibers they are absorbed into the matrix. The
quantity of captured volatiles is governed by two equilibrium
constants, the rate of volatile release from the plant tissues into
the surrounding air and the partitioning of airborne volatiles to
the SPME fiber (partition ratio). In the case of liquid-coated
fibers such as polydimethylsiloxane (PDMS), absorption of vola-
tile compounds occurs relatively rapidly and is governed by
diffusion constants similar to those in organic solvents whereas
with solid coatings the diffusion constants are so small that
absorption does not occur and adsorption to the surface is the
mechanism of sampling (9). With both coatings, highly volatile
molecules of low molecular weights are typically trapped first as
they are the most concentrated of the headspace compounds.
Later, as compounds of higher molecular weight and lower
volatility are captured by the fiber, they must displace the smaller
more highly volatile compounds due to limitations in fiber
volume (10). In addition, ad/absorption parameters can be
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adversely affected by humidity and temperature especially during
static headspace collection due to a lack of gas exchange in sealed
collection vessels.

SPME sampling requires only the exposure of the fiber to a
plant headspace for volatile collection and no pump or hardware is
needed for air circulation, making it ideal for use in the field. In
addition, because the SPME fiber can be used independently of
any other hardware, it allows for high-throughput automated
analysis of multiple samples (11). Following equilibration between
the fiber and volatile sample, the fiber is subjected to direct thermal
desorption onto a gas chromatograph. Because SPME does not
require the use of organic solvents it eliminates bias arising from
differences in analytes’ solubility and avoids the introduction of
impurities which may be present in the solvent and interfere with
sample analysis. Typically SPME is used for qualitative and semi-
quantitative analysis of plant volatiles, although quantification of
volatiles is generally possible, but challenging (5, 12). This method
also fails to provide sufficient amounts of volatiles for structure
elucidation of unknown compounds.

An alternative to SPME is direct injection of headspace, which
involves removing an air sample from static headspace using a gas-
tight syringe and loading it directly into the GC inlet. This simple
technique requires no specialized equipment and is readily auto-
mated but suffers from a lack of sensitivity. Thus, when sampling
from small amounts of tissues that give off very minute volatile
emissions, SPME is the ideal choice due to its facile implementa-
tion, flexibility, and remarkable sensitivity.

1.2. Dynamic

Headspace Sampling

Dynamic headspace sampling of airborne compounds offers the
researcher a highly concentrated sample that can be desorbed into
a solvent at volumes suitable for multiple analyses. To date, it is the
most frequently used technique in all areas of plant volatile analysis
(13). Unlike SPME where the entire sample is desorbed inside the
GC injection liner and subsequently lost as a result of analysis, a big
disadvantage of this method, dynamic headspace sampling collects
a much larger quantity of compounds at higher concentrations
because the continuous stream of air allows the sorbent to act as a
filter trapping the volatiles. Up-scaling of a sampling could be
achieved by increasing the amount of sorbent, the airflow rate,
sample tissue mass, and sampling time. In addition, accurate quan-
titative analysis of airborne compounds is more feasible because
multiple columns can be connected in tandem to estimate volatile
breakthrough and to compensate for differences in affinity of
sorbents to the wide range of airborne compounds emitted by
plant tissues, a technique known as multiple layer adsorption.
Also, push and pull headspace sampling, two examples of dynamic
headspace sampling, allow researchers to avoid problems often
encountered with the sealed systems used in static headspace and
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closed-loop stripping (see below) methods including heat, water
vapor, and ethylene accumulation that can affect not only sampling
efficiency but also plant physiology.

1.2.1. Push and Pull

Headspace Sampling

Push and pull headspace sampling techniques utilize a unidirec-
tional flow of air as a mobile phase to carry plant volatiles to a
trapping system, i.e., a cartridge packed with adsorbing material
such as Tenax, Porapak, and activated charcoal. While both push
and pull systems essentially perform the same task, differences
between them affect their ease of implementation and the com-
plexity of required equipment. Pull headspace sampling utilizes a
vacuum pump to draw air over plant materials and through a
sorbent cartridge. The flexibility of the pull headspace sampling
method offers the researcher the ability to tailor its design to the
needs and conditions of a particular experiment. For example, an
adsorbent trap connected to a vacuum pump could be placed
next to a sample releasing volatiles without enclosure of the plant
into a collecting chamber, or simple open-top chambers could be
used for volatile collection. In both cases, unfiltered ambient air
brings the risk of trapping impurities unrelated to the investi-
gated volatile blend and obscuring the detection of minute
amounts of volatiles during GC analysis. Thus, these two simpli-
fied sampling methods are best suited for high-level emitters.
Enclosure of material in glass containers or cooking bags with
an opening for incoming air allows for the concentration of
volatiles in the isolated airspace and reduction of their loss
through diffusion. Additionally, cleaning incoming air through
a purifying filter (activated charcoal, for example) will eliminate
many impurities, reducing the background and increasing the
sensitivity of detection.

Push headspace sampling involves placing plant samples inside
a sealed, positive-pressure system into which air is pumped and
then forced to exit through a volatile trapping cartridge. Push
headspace sampling provides the advantage of eliminating ambient
background contaminants through the use of pressurized, purified
carrier gasses as the mobile phase. Despite this advantage, push
headspace sampling typically requires bottled gasses, expensive
flow regulators, and unwieldy airtight sampling containers that
drive up expense and difficulty of volatile sampling. In addition,
it becomes difficult to sample from tissues that have not been
excised. It is also far more cumbersome to use in the field where
lightweight and inexpensive materials are desirable for large-scale
samplings in often remote areas. Here we provide a protocol for
sampling volatile headspace in the field or in the laboratory using
an inexpensive, portable, and undemanding pull headspace sam-
pling method that can be used on plant tissues in situ without the
need for excision.
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1.2.2. Closed-Loop

Stripping Method

Closed-loop stripping, like push and pull headspace sampling,
utilizes airflow over a plant specimen to carry volatiles to a trapping
cartridge. Its distinguishing feature is the continuous recirculation
of the stripped air back to the plant sample subsequent to volatile
adsorption allowing quantitative trapping of the emitted volatiles.
Typically, excised plant materials are placed inside a vacuum desic-
cator and a circulating pump attached at the top. A volatile trapping
cartridge is housed within the intake port of the pump. Following
capture of the volatiles on traps they can be eluted with organic
solvents and analyzed directly by GC/MS. The greatest advantage
of the closed-loop stripping method is the reduction of airborne
contaminants, and thus background noise, resulting in heightened
sensitivity for collection from specimens that emit minimal
amounts of volatiles. As in the sealed systems used with static
headspace methods, artifacts can arise from the lack of airflow
through the system and comparisons should be made between
closed-loop and open dynamic headspace methods (5). This system
is ideal for use inside controlled climate growth chambers, green-
houses, and laboratory conditions, though with portable power
supplies excised plant materials can also be sampled in the field. It
may, however, be preferable to adapt a more lightweight and
rugged vessel from which to sample headspace volatiles.

2. Materials

2.1. High-Throughput

Static Headspace

Sampling via SPME

1. Flowering Petunia x hybrida cv. Mitchell diploid (see Note 1).

2. Gas chromatograph (e.g., Agilent 6890) coupled to a mass
spectrometer (e.g., Agilent 5975B inert MSD) and Combi-
PAL autosampler with SPME option (CTC Analytics, Zwingen,
Switzerland).

3. Ultra-high-purity (99.998%) helium for GC carrier gas.

4. SPME fiber assembly (50/30 mm divinylbenzene/Carboxen
on polydimethylsiloxane coating [PDMS/DVB/CAR])
(Supelco, Bellefonte, PA, USA) (see Note 2).

5. Capillary column, HP-5MS (30 m � 0.25 mm, 0.25-mm film
thickness; Agilent, Wilmington, DE, USA).

6. SPME inlet liner (Supelco, Bellefonte, PA, USA).

7. 2-mL glass autosampler vials with polypropylene caps and
PTFE/silicone septa.

2.2. Dynamic

Headspace Sampling

In Situ

1. Flowering Antirrhinum majus plants.

2. Gas chromatograph (e.g., Agilent 6890) coupled to a mass
spectrometer (e.g., Agilent 5975B inert MSD).
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3. Ultra-high-purity (99.998%) helium for GC carrier gas.

4. Capillary column, HP-5MS (30 m � 0.25 mm, 0.25-mm film
thickness; Agilent, Wilmington, DE, USA).

5. 24-oz clear polyethylene terephthalate (PET) beverage cups
with dome top (Lollicup USA, Inc., City of Industry, CA,
USA) (see Note 3; Fig. 17.1F).

Fig. 17.1. (A–D) Equipment used for the closed-loop stripping method. (A) Rotary vane
pump with servo-motor attached shown together with pump adaptors, stainless steel
column housing, and volatile trapping column. (B) Tapered glass volatile trapping column
filled with Porapak-Q and sealed using borosilicate glass wool. (C) Stainless steel column
housing and pump adaptor illustrating enclosure of glass column. (D) Fully assembled
components of closed-loop stripping method including desiccator and plant specimen.
(E–G) Equipment used for pull headspace sampling method. (E) Glass volatile trapping
column filled with Porapak-Q and sealed using borosilicate glass wool. (F) Illustration
showing enclosure of snapdragon in modified PET cup. (G) Implementation of pull head-
space volatile sampling inside growth chamber using whole snapdragon inflorescence.
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6. Porapak-Q resin, 80/100 mesh (Waters, Millford, MA, USA).

7. Glass columns, 100 � 7 � 5 mm.

8. Borosilicate glass wool to seal Porapak-Q inside glass
columns.

9. Flexible PTFE tubing, internal diameter 6 mm.

10. Portable vacuum pump with flow meters.

11. 2-mL V-bottom graduated vials with PTFE-faced, silicon-
lined caps.

12. 2-mL glass autosampler vials with polypropylene caps and
PTFE/silicone septa.

13. 500-mL glass autosampler vial insert with polymer feet
(Agilent).

14. Acetone, redistilled.

15. Dichloromethane, redistilled.

16. N2 for drying down and concentrating eluted samples.

2.3. Closed-Loop

Stripping Method

1. Flowering plants, Petunia x hybrida cv. Mitchell diploid.

2. Gas chromatograph (e.g., Agilent 6890) coupled to a mass
spectrometer (e.g., Agilent 5975B inert MSD).

3. Ultra-high-purity (99.998%) helium for GC carrier gas.

4. Capillary column, HP-5MS (30 m � 0.25 mm, 0.25-mm film
thickness; Agilent, Wilmington, DE, USA).

5. Glass vacuum desiccators fitted with PTFE stoppers, pre-
drilled for pump adaptors (see Note 4).

6. Rotary vane pumps fitted with electric servo-motors (DC 12/
16FK; Fürgut Germany, Tannheim, Germany) (Fig. 17.1A
and D).

7. Custom-fabricated pump adaptors with stainless steel hous-
ing for volatile trapping cartridges (Fig. 17.1C).

8. Variable DC power supply with range of 6–12 V and
50–300 mA.

9. Custom-fabricated glass cartridges, 66 � 5 � 3 mm with
single tapered end (last 1.5 cm) to assist adsorbent retention
(Fig. 17.1B).

10. Porapak-Q resin, 80/100 mesh (Waters, Millford, MA, USA).

11. Borosilicate glass wool to seal Porapak-Q inside glass
columns.

12. 1-mL V-bottom graduated vials with PTFE-faced, silicon-
lined caps.

13. 2-mL glass autosampler vials with polypropylene caps and
PTFE/silicone septa.
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14. 100-mL glass autosampler vial insert with polymer feet
(Agilent).

15. Acetone, redistilled.

16. Dichloromethane, redistilled.

17. N2 for concentrating eluted samples.

3. Methods

3.1. Static SPME

Headspace Sampling

of Volatiles from Excised

Petunia Floral Organs

3.1.1. Preparation of

Tissues for SPME-GC/MS

1. Using a new razor blade, excise 10 petunia pistils from open
flowers 1-day post-anthesis. Allow the cut pistils to drop
directly into an autosampler vial.

2. Quickly cap the vial once the 10 pistils are inside.

3. Prepare remaining samples in the fashion described above.

3.1.2. Combi-PAL

Autosampler Configuration

1. Condition SPME fiber at 280�C for 10 min (add note, initial
conditioning).

2. Collect headspace from each vial for 20 min.

3. Desorb volatiles inside inlet for 2 min and repeat condition-
ing/sampling cycle for each subsequent sample.

3.2. Dynamic Pull

Headspace Sampling

of Volatiles Emitted

from Antirrhinum

majus Inflorescence

In Situ

3.2.1. Column Preparation

1. Ball up glass wool to form a plug dense enough to retain the
Porapak-Q and insert it in a glass column.

2. Weigh out 100-mg Porapak-Q and add it to the column.

3. Insert second glass wool plug to trap Porapak-Q inside column
(Fig. 17.1E).

4. Pre-condition columns by flushing with 5-mL acetone.

5. Wash columns with 5-mL dichloromethane.

6. Dry columns in a 37�C oven overnight to remove solvent and
store in clean, airtight container until use.

3.2.2. Preparation

of Enclosure for Plant

Material

1. Create a 5-mm hole in the bottom of the beverage cup.

2. Insert a 5-cm length of PTFE tubing through the hole so that
<1 cm of the tubing protrudes to the inside of the enclosure.
The tubing elasticity should provide a fit tight enough so that
the tubing and enclosure produce a near airtight seal.

3. Connect a packed glass column via the PTFE tubing attached
to the enclosure.

4. Cut the dome top of the cup longitudinally to allow passage
of an inflorescence stem through the dome lid (Fig. 17.1F).
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3.2.3. Sample Collection 1. Slide enclosure over snapdragon inflorescence taking caution
not to damage the tissues.

2. Stabilize the enclosure using any convenient method.

3. Put a dome around selected inflorescence and use tape to seal
the cut. Snap dome onto the enclosure.

4. Connect column to the vacuum pump via PTFE tubing and
begin sampling at a rate of approximately 2 L/min (Fig. 17.1G).

5. When sampling is completed, switch off the vacuum pump
and remove the column making sure to place it in an indivi-
dual airtight container.

3.2.4. Sample Preparation 1. Elute samples from the columns using 2 mL of redistilled
dichloromethane. Collect eluate in a 2-mL V-bottom grad-
uated vial and cap with PTFE-faced, silicon-lined cap.

2. Dry samples down to final volume of 0.5 mL and transfer it to
an autosampler vial insert (see Note 5).

3. Add internal standard.

4. Analyze by GC/MS (see Section 3.4).

3.3. Dynamic Closed-

Loop Stripping

Headspace Sampling

of Volatiles from

Excised Petunia

Flowers

3.3.1. Column Preparation

1. Assemble the column as described in 3.2.1 using 35-mg
Porapak-Q (Fig. 17.1B).

2. Pre-condition columns by flushing with 1-mL acetone.

3. Wash columns with 2-mL dichloromethane.

4. Dry columns in 37�C oven overnight to remove solvent and
store in clean, airtight container until use.

3.3.2. Sample Collection 1. Excise three petunia flowers at the base of the pedicel with
razor blade. Immediately place only the cut end in a beaker
containing 5% sucrose in water.

2. Place the beaker with cut flowers into the glass desiccator and
close the lid.

3. Insert pre-drilled PTFE stopper in the desiccator lid.

4. Place a clean, dry column inside steel housing and attach it in
pump intake port. Be sure that the airflow is pulled first through
the column into the pump and recirculated to the desiccator.

5. Slide pump adaptors through pre-drilled holes of the PTFE
stopper in desiccator lid (Fig. 17.1D).

6. Adjust voltage to provide airflow of 2-L/min and begin
sampling (see Note 6).

7. When sampling is completed, disconnect the power supply
and remove the columns making sure to place them in indi-
vidual airtight containers.
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3.3.3. Sample Preparation 1. Elute samples from the columns using 1 mL of redistilled
dichloromethane. Capture eluate in a 1-mL V-bottom grad-
uated vial and cap with PTFE-faced, silicon-lined cap until all
samples are eluted.

2. Dry samples down to final volume of 0.1 mL and transfer to
an autosampler vial insert.

3. Add internal standard.

4. Analyze by GC/MS (see Section 3.4).

3.4. GC/MS Parameters a. Inlet temperature is set to 280�C.

b. GC interface temperature set to 280�C.

c. MS source set to 250�C.

d. Quadrupole set to 150�C.

e. Mobile phase flow rate is 1.0 mL/min.

f. GC temperature gradient programmed as follows: Initial tem-
perature of 30�C held for 2 min followed by gradient of 5�C/min
to 260�C, hold for 6 min (see Note 7).

3.5. Data Analysis After collection of volatiles from plant samples and their separation
on GC/MS, the data will be presented as a total ion chromatogram
of individual constituents in the analyzed blend. Peaks within this
chromatogram contain two types of information that can be used
for compound identification: retention time and mass spectrum
consisting of a characteristic ion fragmentation pattern. Identifica-
tion of a compound based on only one of these parameters is risky
and often leads to its misidentification. To date, several compre-
hensive mass spectral libraries are commercially available (Wiley,
NIST MS Database) and can guide researchers in their choice of
authentic standards for comparison. These standards should be run
along with a sample and their retention times and mass spectra
should match that of the analyte of interest if identification is
correct. It is also recommended to match retention time between
authentic standard and analyte of interest on a column of different
polarity. Figure 17.2 represents the analysis of volatile compounds
collected from snapdragon flowers using the closed-loop stripping
method (Fig. 17.2B) and complementary authentic standards
(Fig. 17.2A) run on GC/MS under the same conditions. All
identified compounds were matched to standards using retention
time and mass spectrum as it is shown for 3,5-dimethoxytoluene
(see inserts in Fig. 17.2A and B). Since the biological activity and
function of particular volatile blend often depends on its enantio-
meric composition, determination of compound chirality is often
required. To achieve this goal a variety of capillary columns are
available for separation of enantiomers using GC, and their applica-
tions, advantages, and disadvantages are thoroughly discussed in
recent reviews (14, 15). Figure 17.3 represents an enantiomeric
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Fig. 17.2. Total ion chromatograms of floral scent authentic standards representative of snapdragon cv. Maryland True Pink
(MTP) floral scent blend with insert depicting mass spectrum from 3,5-dimethoxytoluene (A) and volatile profile of emitted
MTP snapdragon floral scent with insert depicting mass spectrum from 3,5-dimethoxytoluene (B). Numbered peaks (1–10)
represent toluene (1, internal standard); ß-myrcene (2); trans-ocimene (3); cis-ocimene (4); methyl benzoate (5); S-linalool
(6); naphthalene (7, internal standard); 3,5-dimethoxytoluene (8); cis-nerolidol (9); trans-nerolidol (10).

Fig. 17.3. Total ion chromatograms depicting separation of linalool enantiomers. (A)
Enantiomeric separation using racemic mixture of R- and S-linalool on ß-cyclodextrin
enantioselective GC column. (B). The floral scent of snapdragon flowers contains only
S-linalool, as demonstrated by the separation of floral scent on the same column.
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separation of racemic mixture of linalool authentic standard in com-
parison with that emitted by snapdragon flowers. In this case, scent
was collected by SPME and volatiles were analyzed using GC-MS
equipped with 2,3-di-O-methyl-6-O-tert-butyl dimethylsilyl beta
cyclodextrin doped into 14% cyanopropylphenyl/86% dimethyl
polysiloxane (RtTM-bDEXsm) column (30 m � 0.25 mm ID)
(Restek, Bellefonte, PA) under conditions provided by the
manufacturer.

4. Notes

1. Sample acquisition in metabolomic experiments requires consis-
tency. Because plant volatile emissions are linked to the physio-
logical status of the emitter, special care must be taken to control
not only the plant-growing environment but also all other pos-
sible variables concerning the growth of the plant to limit
unwanted fluctuations in metabolism that might affect collected
data. This includes time of day, photoperiod, temperature,
humidity, water conditions, etc. Whenever possible, growth
chambers must be used for plant cultivation and volatile collec-
tion. Pests and pathogens must be excluded at all costs (unless
the subject of the experiment) and conditions that may alter
plant metabolism in other ways must be avoided, i.e., environ-
mental stresses. For this method, make sure that the flowers are
at the same developmental stage and that they come from a large
set of plants growing under near-identical conditions. Also, it is
best to minimize the time period that samples spend on the
autosampler tray prior to SPME headspace collection.

2. SPME fibers are available in with wide range of coatings that
allow sampling of volatiles, semi-volatiles, polar analytes, and
flavor and odor compounds. Because the goal of a metabo-
lomic analysis is to sample as many metabolites as possible, the
use of PDMS/DVB/CAR fibers is recommended to increase
the number of analytes that the fiber is capable of trapping.
Depending on the application, the sensitivity of trapping
could be optimized through the use of a more specific fiber
type to increase affinity to a particular volatile compound.
Although SPME fibers can be re-used many times before
they should be discarded (�100 desorptions), the number
of uses should be controlled in order to avoid sampling errors
introduced by losses in fiber sensitivity.

3. When sampling from plants in situ, options become increasingly
limited by the weight of the sampling apparatus, restricting the
use of glass enclosures. Researchers have ingeniously modified
PET beverage cups found often in the food service industry for
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volatile sampling and polyacetate cooking bags have also been
employed (5, 16). The setup is flexible and could be improvised
as well as optimized for the working conditions and available
resources in each particular case. These supplies are readily
available and usually inexpensive; however, it is necessary to
account for background contaminants originating from the
enclosure materials or their adsorption of plant volatiles. Con-
trols should include samplings without plant materials to iden-
tify any compounds leaching from plastics and those present in
the ambient air. Also, a comparative quantitative analysis of
volatiles collected using different types of open-top enclosures
will account for losses due to unintended adsorption by enclo-
sure material. It is advisable to avoid recycling enclosures to
minimize carryover of analytes between samples.

4. The main disadvantage of this technique is the accumulation of
water vapor, heat, and ethylene inside the sealed container (5)
that can adversely alter plant metabolism and affect sorbent
efficiency, changing the spectrum of both emitted and collected
volatiles. Thus, it may be necessary to limit sampling times as a
result to eliminate introduction of artifact. It may also be
beneficial to compare volatiles captured using closed-loop strip-
ping with those collected in more vented systems, such as push
or pull headspace to identify artifacts of the sampling method.

5. It may be necessary to decrease the final sample volume to
increase concentration of trace volatiles.

6. Since volatile emissions from many plant species vary with
respect to the time of day, collection strategies should con-
sider volatile sampling over a 24-h period to prevent uninten-
tional exclusion of volatile blend components. This can be
done by using one column with a 24-h collection period or by
changing columns after specified intervals.

7. Initial temperature of 30�C is a recommended temperature
for GC/MS analysis of volatile compounds dissolved in
dichloromethane due to its low boiling point (39�C). GC/
MS analysis of volatiles collected with SPME does not require
such low temperature and can be started at 40�C, thus dras-
tically reducing GC cycling time.
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L., and Stránsky, Z. (2003) SPME – A valu-
able tool for investigation of flower scent.
J. Sep. Sci. 26, 715–721.

11. Aharoni, A., Giri, A.P., Deuerlein, S.,
Griepink, F., de Kogel ,W.J., Verstappen,
F.W.A., Verhoeven, H.A., Jongsma, M.A.,
Schwab, W., and Bouwmeester, H.J.
(2003) Terpenoid metabolism in wild-
type and transgenic Arabidopsis plants.
Plant Cell. 15, 2866–2884.
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Chapter 18

Chemical Genomics Approaches in Plant Biology

Lorena Norambuena, Natasha V. Raikhel, and Glenn R. Hicks

Abstract

Chemical genomics (i.e., genomics-scale chemical genetics) approaches are based on the ability of low-
molecular-mass molecules to modify biological processes. Such molecules are used to affect the activity of a
protein or a pathway in a manner that is tunable and reversible. A major advantage of this approach
compared to classical plant genetics is the fact that chemical genomics can address loss-of-function lethality
and redundancy. Bioactive chemicals resulting from forward or reverse chemical screens can be useful in
understanding and dissecting complex biological processes due to the essentially limitless variation in
structure and activities inherent in chemical space. An important aspect of utilizing small molecules
effectively is to characterize bioactive chemicals in detail including an understanding of structure activity
relationships (SARs) and the identification of active and inactive analogs. Bioactive chemicals can be useful
as reagents to probe biological pathways directly. However, the identification of cognate targets and their
pathways is also informative and can be achieved by screens for genetic resistance or hypersensitivity in
Arabidopsis thaliana or other organisms in which the results can be translated to plants. Here, we describe
approaches to screen for bioactive chemicals that affect biological processes in Arabidopsis. We will also
discuss considerations for the characterization of bioactive compounds and genetic screens for target
identification. This should provide those who are considering this approach some practical knowledge of
how to design and establish a chemical genomics screen.

Key words: Chemical genomics, screening, target identification, structure–activity relationship
(SAR), Sortin, endomembrane, vacuole.

1. Introduction

To fully understand the biology of a biological pathway, it is crucial
to manipulate it and study the function of its corresponding genes.
In Arabidopsis, although T-DNA inactivation mutants have
become a valuable tool for understanding gene function, the avail-
ability of viable and informative knockout lines is limited because
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the loss of function for a substantial number of genes is lethal.
Another, and perhaps more formidable, challenge is that knockouts
may display no phenotype due to functional gene redundancy which
may complicate analysis and interpretation. Chemical genomics
approaches are based on the ability of low-molecular-mass mole-
cules to modify the activity of a protein or a pathway overcoming the
limitations of mutational approaches. Such compounds can trigger
tunable and reversible plant responses which are difficult or impos-
sible to achieve using conventional genetics in plants. In forward
chemical genomic screens, thousands of compounds are tested for
their ability to alter a specific pathway resulting in a phenotype.
Ultimately, bioactive compounds can be useful to understand and
dissect molecular and biochemical processes. The power of bioactive
molecules in plant biology has been amply illustrated by the use of
specific chemical inhibitors of biological processes. Examples
include chemicals such as brefeldin A (1, 2), latrinculin B (3), and
auxin transport inhibitors (e.g., NPA) (4). Recently, several new
bioactive compounds in Arabidopsis have been found via screening
(5–8). Subsequent identification of chemical targets can be achieved
by biochemical or genetic approaches. Biochemical identification of
targets can be difficult because success depends on the type of
chemical–target interaction, the abundance of the target site and
the binding affinity of a bioactive chemical for its target. Arabidopsis
genetic screens for resistance can be time consuming; however, they
have resulted in the identification of the corresponding cognate
targets for several novel chemicals in the past few years (9–12).

In principle, a chemical screen can be performed in any plant
system. However, the advantage of using Arabidopsis is that the
available genetics and genomic tools, which are substantial, can be
used to identify genes involved in a target pathway. The more
critical aspect for success is to have a simple, reliable, and robust
phenotypic assay that can be done in a high-throughput manner.
The use of robots for performing a screening assay can improve
reliability and speed as well. The methods described in this chapter
outline (i) a chemical screen based upon the root length of Arabi-
dopsis seedlings, (ii) characterization of one hypothetical bioactive
compound, Chemical A, and (iii) a genetic screen to identify
hypersensitive and resistant mutants to Chemical A and, ulti-
mately, a potential cognate target.

2. Materials

2.1. Medium The culture medium for making plates is 0.5� Murashige and
Skoog (MS) medium (PlantMedia, Dublin, OH) pH 5.6 contain-
ing 2% sucrose and 0.3% GELRITE (RPI, Illinois, IL).
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2.2. Plant Material 1. For the chemical screen discussed, wild-type Arabidopsis
(ecotype Columbia-0) will be used. The screen for genetic
resistance or hypersensitivity will be performed using a collec-
tion of EMS-treated Arabidopsis (ecotype Columbia-0) seeds
(M2 population) prepared as described in Lightner and
Caspar (13).

2. Seeds are sterilized and stratified in darkness for 48 h at 4�C
prior to plating. They are germinated and grown in an incu-
bator at 22�C under standard conditions of humidity and
photoperiod appropriate for growing Arabidopsis.

2.3. Chemical Library

Sources

Chemical collections can be purchased from numerous commer-
cial sources. Usually the criteria for choosing a library are the
number and structures of compounds that are to be screened for
activity. Depending on their size, chemical libraries come in 96- or
384-well format plates. The chemical library used in this example
screen is the DIVERSet library (ChemBridge, San Diego, CA)
which comes in 96-well format plates. To prepare master plates
with stock solutions, DMSO (Fischer Scientific) is used as solvent.
The advantage of purchasing libraries from commercial sources
over attempting synthesis is that those compounds that trigger
interesting phenotypes can usually be re-ordered individually for
further characterization.

2.4. Chemical

Treatments

The DIVERSet library (ChemBridge, San Diego, CA) contains
10,000 small organic molecules in a 96-well format plate. In a 96-
well format it is possible to pipet chemicals by hand using multi-
channel pipetters. However, this is much more difficult for 384-well
format library plates. In such cases, access to liquid-handling robots
is extremely valuable, if not a necessity. For example, our laboratory
has access to several robots including a relatively simple Precision
2000 pipetting robot (Bio-Tek Instruments, Winooski, VT) as well
as a more sophisticated BioMek (Beckman Instruments) that is
capable of liquid transfer by either pipette tips or pin tools for
small volume transfers (for instance, 0.2 ml).

For labs that wish to pipet chemicals, the following protocol
should prove useful.

1. For master plates, dissolve 0.1 mg of each compound in 20 ml
of 100% DMSO and store at –20�C (see Note 1).

2. Prepare working solution plates by diluting each master plate
fivefold with water in polypropylene 96-well plates (Corning,
# 3355). The final concentration of the compound solutions
will range between 2 and 4 mM (depending upon the mass of
the compounds) in 20% DMSO.

3. For direct screening of Arabidopsis seedlings, re-array the
working solution library from 96-well format to a 24-well
format (see Note 2).
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4. For chemical screen:
4.1 Add 10 ml of each chemical from working solution plates

to each well of a 24-well plate (Corning, #3526).

4.2 To each well, add 390 ml of culture media (at 50�C) and
mix it by shaking the plate gently. Allow the agar to
solidify for 30–40 min. The final concentration of com-
pound is 25 mg/ml in 0.5% DMSO (see Note 1).

5. Screens for genetic resistance and hypersensitivity:
The screening is performed using large format Petri plates

(23.5 cm � 23.5 cm). Pour 120 ml of 0.5� MS agar med-
ium containing Chemical A at the concentration for resistance
(CR) or hypersensitivity (CHy) screening (see Section 3.4).

3. Methods

3.1. Practical

Considerations Before

Starting a Chemical

Screen

3.1.1. Define the Phenotype

You Would Like to Score for

As mentioned above, the phenotypic assay is crucial for the design of
the chemical screen. To work in a high-throughput manner, the
assay has to be as quick and straightforward as possible. Depending
on the assay, developmental and physiological phenotypes can be
analyzed directly. Phenotypic screens for responses to a stimulus
have been successful for screening thousands of chemicals and have
resulted in novel bioactive chemicals (6, 7). On the other hand,
effects of the compounds may be monitored at the subcellular level,
via monitoring of marker proteins fused to GFP and targeted to
different compartments or cell domains. Organelle or membrane-
localized GFP markers can also permit the visualization of compart-
ment morphology. For example, we have utilized the tonoplast
marker GFP-dTIP to great effect in examining the morphology of
vacuoles (14).

Although this can be done using a conventional confocal
microscope, such screens can be greatly aided by the use of a
high-throughput confocal microscope such as the Pathway HT
(Atto Biosciences). For such laborious assays, an alternative
primary screen can be designed using an easily scored phenotype
(if available) that is associated with the phenotype of interest.
For example, inhibition of root growth is a phenotype asso-
ciated with many different bioactive molecules at high concen-
trations. Such generalized primary screens can then be followed
up by more specific secondary screens for subcellular pheno-
types of interest. This two-step approach to screening can save
considerable time and effort (7). Other developmental pheno-
types such as size or the presence/absence of organs (cotyle-
dons, tricoms, root, etc.) can be useful for prescreening a large
chemical library.
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As a final alternative, the primary phenotypic screen can be
done in a simpler system such as yeast. This approach works well
for processes that are conserved evolutionarily such as endomem-
brane trafficking, transcription, or translation. Chemicals of inter-
est can then be tested in Arabidopsis (5).

3.1.2. Choice of Chemical

Library: Advantages

of Diverse, Tagged, and

Focus Libraries

Chemical companies have collected a large variety of compounds
to create diverse libraries. In principle, the advantage of such large
collections is that they are fairly structurally unbiased, although
bias is impossible to eliminate fully. An advantage of using a
relatively unbiased collection is that the chances of finding a
novel and interesting chemical are increased. However, without
any notion of what is bioactive from a structural viewpoint, a large
number of compounds must be screened in order to find a hit.

If the purpose of doing a chemical screen is to identify biolo-
gical targets, the use of a tagged chemical library can be more
convenient, at least in principle. Such libraries incorporate into
their structures a tag such as a reactive amine. Once a bioactive
tagged chemical is identified, a biochemical approach can be taken
to isolate the target using an affinity matrix to which the chemical
is immobilized. These types of libraries are built on scaffolds that
are suitable for tagging and, thus, are more biased than untagged
libraries. Although reported, such libraries are not commercially
available yet (15). Nonetheless, there are already some reports of
successful target identification using this strategy in non-plant
models (16, 17). It is also possible to add a linker attachment tag
to many chemicals of interest. However, loss of activity poses a
significant risk with this strategy.

In cases where more in-depth structural variants of a particular
compound are desired, so-called focus libraries can be synthesized
based on a known chemical. Usually such libraries are a systematic
variation of a well-characterized chemical and require the expertise
of an experienced synthetic chemist who is interested in collabor-
ating with biologists.

3.2. A Chemical Screen In this hypothetical example, a primary screen is performed using a
10,000 compound library in order to identify chemicals that inhibit
root growth. Once the primary hits are identified, a secondary
screen could be done using a specific assay of interest (not described
here).

1. Place five to eight stratified Arabidopsis seeds in a line along
the center of each well of a 24-well plate (when placed verti-
cally) containing media supplemented with chemicals.

2. Incubate plates vertically in light at 22�C for 5 days.

3. Score the plates and record the size of seedlings by imaging
the plates using a flat-bed scanner (for example, model 2450;
Epson, Long Beach, CA).
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4. A chemical is considered a primary hit when the majority of
seedling roots in the well are shorter than the control. Root
and hypocotyl lengths can also be quantified from images
using software such as NIH image or Scion Image (Scion
Corp, Frederick, MD) which can be downloaded free of
charge (http://www.scioncorp.com/).

5. Primary hits have to be confirmed. Perform the assay under
the same conditions as the primary screen at concentrations of
0, 0.25, 5, and 10 mg/ml in a 24-well plate format.

6. A chemical is considered as a confirmed positive if (i) root
growth inhibition is present in the re-test and (ii) the effect of
the chemical appears to be dose dependent.

3.3. Characterizing

Bioactive Chemicals:

Specificity and Analogs

Once bioactive dose-dependent chemicals are identified several
aspects must be tested in order to demonstrate that they are
valuable probes for a particular phenotype or pathway. Aspects
such as inducibility, reversibility, and specificity will be discussed.

1. Inducibility is the ability of a compound to yield a phenotype
in a relatively short period of time, on the order of hours or
days. For inducibility, seeds are sown in the absence of che-
mical for 5 days in light at 22�C. Then, seedlings are trans-
ferred to a plate with Chemical A for 3 days to test for
inhibition of root growth due to a bioactive chemical.

2. Reversibility is the loss of phenotype over time due to chemi-
cal metabolism, modification, exclusion, sequestration, or
other form of metabolic clearing. For reversibility, this assay
is carried out under the same conditions as the primary screen
for bioactive dose-dependent chemicals. Seedlings are then
transferred to a plate without the chemical, to test for recov-
ery of wild-type phenotype; such recovery would indicate that
the chemical effect is reversible.

3. Specificity refers to the ability of a chemical to affect a specific
biological process. One of the important questions in work-
ing with bioactive chemicals is whether a resulting phenotype
is due to a chemical or to a more generalized effect, for
example, on growth and development. In other words, does
the interaction of a chemical with a specific cognate target
result in the observed phenotype? A useful strategy for exam-
ining specificity is to test active and inactive structural analogs.
Having similar molecules that are inactive would show that
the chemical effect is specific in terms of chemical structure.
Along these lines, studies of structure–activity relationships
(SARs) can be conducted in order to gain insights into the
specific moieties and domains important for bioactivity.
These structural analogs can be searched using databases
such as ChemMine (18) which is a publically available data-
base that has associated with it a number of highly useful tools
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for searches. For example, structural similarity searches can be
done among millions of chemicals, many of which are avail-
able commercially. The database also permits substructure
searches and can produce graphical representations of relat-
edness. ChemMine centralizes compound structure and
activity information from a growing number of public provi-
ders and vendors of chemical screening libraries. Thus, in
most cases, structural analogs and substructures can be iden-
tified and obtained with surprising ease.

3.4. Target

Identification: Screens

for Genetic Resistance

and Hypersensitivity

Once a bioactive compound is identified, its use can be combined
with genetic screens to identify genes related to the chemical’s
target pathway. Screens for genetic resistance and hypersensitivity
can be done for this purpose. Based upon the dose–response
behavior of one of our hits, Chemical A, the design of a genetic
screen would be straightforward in this case where the chemical of
interest results in inhibition of root growth (Fig. 18.1A). The
minimum concentration to observe the phenotype reliably will
correspond to the chemical concentration for a resistance screen
(CR) (Fig. 18.1B). In contrast, a hypersensitive screen should be
done at the maximum chemical concentration that does not result
in phenotype in wild type (CHy) (Fig. 18.1C).

3.4.1. Screen for Genetic

Resistance

1. Place stratified Arabidopsis EMS mutant seeds at a density of
150–200 seeds per row with 5 rows per Petri plate (Section 2.4)
on medium supplemented with Chy of Chemical A (up to 1000
seeds per plate).

2. Incubate plates in a vertical position for 7 days in light at 22�C.

3. Seedlings with roots longer than 0.3 cm are putative resistant
mutants (Fig. 18.1B).

4. To recover, transfer putative resistant seedlings to medium
without Chemical A. Incubate for three more days.

5. Transplant Chemical A-resistant seedlings to soil and collect
M3 generation seed.

6. Re-test the resistance of M3 generation seedlings. To do this,
plate 10–20 seeds on the presence or absence of CR of Chemical
A and rescore.

3.4.2. Screen for Genetic

Hypersensitivity

1. Place stratified Arabidopsis EMS mutant seeds at a density of
150–200 seeds per row with 5 rows per Petri plates (Section
2.4) containing media supplemented with CHy of Chemical A
(up to 1000 seeds per plate).

2. Incubate plates in a vertical position for 7 days in light at 22�C
(Fig. 18.1C).

3. Transfer seedlings with roots less than 0.3 cm to medium
without Chemical A. Incubate the transferred seedlings for
five more days.
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4. Seedlings that resume root growth in the absence of Chemical
A display a phenotype that is drug dependent (Fig. 18.1D).
Seedlings that do not resume growth in the absence of Chemical
A may be developmental mutants whose phenotype does not
depend upon the presence of the chemical (see Note 3).

5. Transplant seedlings displaying a Chemical A drug-dependent
phenotype to soil and collect M3 generation seed.

6. Re-test the hypersensitivity of M3 generation seedlings as well
as their Chemical A drug-dependent phenotype. For this,
plate 10–20 seeds in the presence or absence of CHy.

Fig. 18.1. (A) Chemical A dose response. The phenotype is tested at several concentra-
tions of Chemical A. CHy (1X) and CR (5X) are defined for genetic screens. (B) Genetic
screen for resistance. Seedlings (circled) display genetic resistance to CR of Chemical A.
(C) Genetic screen for hypersensitivity. Seedlings (arrowed) display sensitivity to
Chemical A at a concentration that has no effect upon seedling growth of wild-type
plants (CHy). A convenient cut-off length for seedling roots after 7 days is 0.3 cm.
(D) These seedlings are transferred to a non-chemical plate for 5 days. Seedlings that
resume root growth in the absence of chemical are considered drug-dependant mutants
(circled).
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7. Determine the mean root lengths (n = 10–20 per mutant)
using Scion Image (Scion Corp, Frederick, MD). By quanti-
fying from scanned images, normalized ratios of relative
hypersensitivity can be generated.

4. Notes

1. Typically, the chemicals should be screened at as high a con-
centration as feasible without the concentration of DMSO
exceeding about 1%. At such percentages, DMSO will inhibit
growth complicating the results. Typically the final screening
concentrations of chemicals in a primary screen can range from
50 to 100 mM. Although this may seem like a high concentra-
tion, remember that these compounds have been optimized
only to be ‘‘drug-like’’ in that their properties that should permit
them to be membrane permeable in mammalian cells. It is more
difficult to assess other properties such as transport through the
vascular system, stability in terms of inactivation, breakdown,
sequestration, or other detoxifying mechanisms.

2. The re-array of the working solution library to a 24-well
format can be done by using either a handheld multi-channel
pipetter or a Bio-Tek Precision 2000 liquid-handling robot or
similar fluid-handling robot. If more screens are planned,
generate working solution plates in the 24-well format.

3. Resistant and hypersensitive mutants to Chemical A can be
classified based on the strength of phenotype: strong, mod-
erate, or weak phenotypes for instance. Using the example of
root length, this can be quantified from scanned images and
‘‘strong mutants’’ can even be defined (for example, those
with roots greater than 1 cm in length in the presence of
Chemical A). Such definitions are extremely useful in prior-
itizing mutants for further studies or mapping.
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Chapter 19

Comparison of Quantitative Metabolite Imaging Tools
and Carbon-13 Techniques for Fluxomics

Totte Niittylae, Bhavna Chaudhuri, Uwe Sauer, and Wolf B. Frommer

Abstract

The recent development of analytic technologies allows fast analysis of metabolism in real time. Fluxomics
aims to define the genes involved in regulation of flux through a metabolic or signaling pathway. Flux
through a metabolic or signaling pathway is determined by the activity of its individual components;
regulation can occur at many levels, including transcriptional, posttranslational, and allosteric levels.
Currently two technologies are used to monitor fluxes. The first is pulse labeling of the organism with a
tracer such as C13, followed by mass spectrometric analysis of the partitioning of label into different
compounds. The second approach is based on the use of flux sensors, proteins that respond with a
conformational change to ligand binding. Fluorescence resonance energy transfer (FRET) detects the
conformational change and serves as a proxy for ligand concentration. Both methods provide high time
resolution. In contrast to mass spectrometry assays, FRET nanosensors monitor only a single compound,
but the advantage of FRET nanosensors is that they yield data with cellular and subcellular resolution.

Key words: Flux, FRET, nanosensor, carbon-13.

1. Introduction

Metabolic fluxes underlie all biological activity, ultimately mani-
festing phenotype and functioning of an organism. Metabolic flux
is highly dynamic and is controlled through signaling networks to
acclimate appropriate cellular responses to environmental chal-
lenges. Fluxomics aims at quantifying and modeling these fluxes
in the entire metabolic network of an organism, a feat that has not
yet been attained, as well as the factors affecting all fluxes. Flux is
measured either by determining the flow of a label (typically a
radiotracer) in metabolic networks or by measuring changes in
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substrate and product concentrations. At present, none of the
existing experimental techniques is capable of comprehensively
resolving all of the metabolic fluxes of entire metabolic networks
in any organism; however for apparent reasons, most progress has
been made in single cell microbes. This review provides a compar-
ison of quantitative metabolite imaging and carbon-13-based
approaches for flux analysis. The particular focus is on the methods
that were developed recently for metabolite imaging and how they
can be used to measure the rate changes of metabolite concentra-
tions with subcellular resolution, and how the information gained
from the use of quantitative imaging can be applied to estimate net
flux. For a more detailed review of FRET-based analysis of in vivo
metabolite levels, cf. Okumoto et al. (1).

2. Isotope-Based
Flux Analysis

Isotope tracers have proven very effective for determining
pathway structure in the past (e.g., the dark reactions in photo-
synthesis (2, 3)) and are currently being applied to obtain com-
prehensive flux analysis with the aim of producing system-wide
flux maps of metabolic networks. The increased sensitivity of
mass spectrometry (MS) and nuclear magnetic resonance
(NMR) techniques obtained over the past years, and the devel-
opment of powerful tools for data analysis, begins to make
system-wide flux analysis possible in microorganisms as well as
plants. 13C-based flux analysis has been pioneered in microorgan-
isms such as bacteria and yeast (4–6) but is increasingly used in
plants. For recent reviews of isotope flux measurements in plants
confer the special issue on fluxomics in Phytochemistry (7) and
recent reviews in other journals (8, 9).

Isotope flux measurements can be classified into two cate-
gories: steady-state analysis which measures the distribution of a
label after the system has attained an isotopic and metabolic steady
state, i.e., the point at which the labeling of each metabolite in a
network is constant. This method is most powerful when applied
in microbes, because they can easily be cultivated under such
steady-state conditions. Steady-state labeling has been also been
used to create flux maps of central carbon metabolism in plants
(10, 11) and has helped, for example, to establish a previously
unknown role for Rubisco as CO2 scavenger during oil synthesis
in Brassica napus seeds (12). The second isotope flux measure-
ment approach is dynamic, using time-course analysis of label
distribution to calculate flux. In plants, dynamic analysis has been
mainly used to characterize secondary metabolite pathways.
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Notable examples include the characterization of 38 fluxes
involved in the production of benzenoid compounds in Petunia
petals (13) and the regulation of phenylpropanoid biosynthesis in
potato tubers (14).

The major advantage of 13C flux measurements is that it allows
the determination of net fluxes in a network and, in some cases,
provides the individual forward and backward fluxes of bidirec-
tional steps using the information embedded in the isotopomer
distribution (15). For this purpose, isotope-based flux analysis
requires mathematical models that represent the possible isotopic
states of the metabolic network. The distribution of fluxes is then
estimated as a best fit of intracellular fluxes to the actually mea-
sured isotope distributions and physiological fluxes in and out of
the cell. The main challenge in flux analysis of plants (and other
eukaryotes) using isotopes comes from the complexity of the
metabolic networks arising from different cell types and the sub-
cellular compartmentalization of metabolism.

Another challenge is that analysis of isotope experiments
relies on the current structural understanding of the networks
involved: in plants these are only known accurately for a few
pathways in primary metabolism. Even for primary metabolism
the subcellular compartmentalization of the pathways is not
always clear and is still being revised as apparent from, for
example, the recent discovery of a plastidic maltose transporter
and maltose metabolizing cytosolic glucosyltransferase, both of
which are essential for starch degradation in leaves (16–18).
Another example of the limited understanding of metabolic
compartmentalization in plants is the debate on sucrose trans-
port in and out of vacuoles, which contributes to carbon sto-
rage in leaves, in stems of sugarcane, and in roots of sugar beet
(19, 20). Only recently one of the sucrose transporters SUT4
was localized to the tonoplast membrane (21), although it
remains unclear how exactly SUT4 contributes to vacuolar
sucrose accumulation.

Our current understanding of the compartmental distribu-
tion of metabolites relies mostly on the destructive analysis of
whole organs. Compartmentalization of metabolic reactions and
metabolite flux within and between cells can only be understood
if the cellular and subcellular flux of the metabolites can be
established by non-destructive dynamic monitoring techniques.
Therefore the application of methods for the non-destructive
determination of metabolite fluxes in subcellular compartments
and different cell types is of major importance. A comparison of
extractable in vitro enzyme activities and steady-state in vivo
fluxes in B. napus embryos showed no clear correlation between
the two (22), emphasizing the necessity for developing non-
invasive in vivo analysis techniques with cellular and subcellular
resolution.
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3. Imaging-Based
Flux Analysis

As an alternative to the isotope-based flux methods, metabolite
imaging-based flux analysis, which measures dynamic changes in
metabolite concentration, provides both cellular and subcellular
resolution. The development of Förster resonance energy transfer
(FRET)–based nanosensors was the first step toward in vivo flux
measurements (23). Genetically encoded FRET sensors enable
both the analysis of steady-state concentration of metabolites and
dynamic changes in response to perturbations in living tissue with
high temporal and, most importantly, subcellular resolution.
FRET sensors report conformational changes of proteins (recog-
nition elements) as a change in the rate of energy transfer between
two coupled fluorophores (reporter elements) (24). Thus when
the recognition element changes conformation in response to
analyte binding, a change in the FRET efficiency reports a change
in analyte levels. Importantly, such FRET sensors report changes
in steady-state levels over time, e.g., glucose nanosensors, after
addition of glucose to a cell or an intact organ, provide informa-
tion on the sum of the rate of influx and the rate of metabolism.
The principle of inferring flux information from these metabolite
nanosensors is thus based on the analysis of dynamic responses of
metabolite concentrations when the composition of the external
medium is manipulated. Apparently the sensor reports only a
single metabolite or the change in any of the flux components
that affect the steady state.

The concept for genetically encoded FRET sensors was ori-
ginally developed 10 years ago for measuring calcium by Persechi-
ni’s and Tsien’ s groups (25, 26). In short, a calmodulin was fused
between two fluorescent proteins (e.g., cyan and yellow variants of
the green fluorescent protein, GFP). When the cyan FP in the
fusion protein is excited with 435 nm light, a fraction of the energy
will be transferred to the yellow FP provided the yellow FP is in
Förster distance (50% energy transfer at �5 nm distance). When
Ca2þ binds to calmodulin, the domain undergoes a conforma-
tional change which results in a change in FRET and thus into a
change in the ratio of emission of the two fluorescent proteins.
Miyawaki et al. (25) used an additional actuator, a calmodulin-
binding domain to increase the conformational rearrangement of
the binding moiety. FRET nanosensors are essentially ratiometric
dyes that provide for quantitative measurements and, since they
are DNA encoded, analyses can be performed in any type of
transiently or stably transformed cells. Moreover, the addition of
targeting sequences allows targeting of the fusion proteins to
specific cellular compartments. Subsequent imaging of compart-
ment-specific fluxes then does not require high-resolution
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microscopy due to the specific localization of the sensors. Based on
this concept, a variety of nanosensors have been developed for
small molecules (phosphate, carbohydrates, and amino acids)
using bacterial periplasmic binding proteins or transcriptional reg-
ulators as the backbone (27–35) (Table 19.1). All published
FRET sensors developed by the Frommer lab can be obtained
from Addgene (http://carnegiedpb.stanford.edu/research/from
mer/nanosensors/index.html) for a nominal fee.

Therefore the combination of in vivo metabolite imaging
techniques and mass spectrometry-based fluxomics is likely to be
required to understand the dynamics of metabolic systems. For a
comparison of the two approaches, cf. Table 19.2.

Table 19.1
FRET sensors for ion and metabolite analysis

Analyte Recognition element Sensor construct Reference

Glucose/
galactose

Bacterial periplasmic binding
protein

FLIPglu (27, 41, 60)

Maltose Bacterial periplasmic binding
protein

(28, 43)

Sucrose Bacterial periplasmic binding
protein

(64)

Ribose Bacterial periplasmic binding
protein

(34)

Arabinose Bacterial periplasmic binding
protein

(43)

Glutamate Bacterial periplasmic binding
protein

(27, 35)

Tryptophan Bacterial repressor protein (33)

Arginine Bacterial periplasmic binding
protein

(65)

Calcium Calmodulin, troponin C (52, 62)

Phosphate Bacterial periplasmic binding
protein

(32)

Other FRET
sensors

Various For review, cf., e.g.,
(47, 49)
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4. Comparison
of FRET Sensor
and Carbon-
13-Based
Fluxomics

When integrating 13C-data, extracellular fluxes, and biosynthetic
requirements with computer models, 13C-based fluxomics can
reach high pathway coverage for those parts of the metabolism
where a particular tracer molecule is converted and suitable ana-
lytes are available to track the resulting isotope patterns of these
conversions. The flux distribution is typically identified by iterative

Table 19.2
Side-by-side comparison of 13C- and nanosensor-based fluxome analyses

Application 13C-fluxomics Nanosensor-based fluxomics

Pathway coverage High Limited to single node

Sensitivity > 0.1 mmol analyte per
hour and g of cells (dry
weight)

Depends on the Kd and dynamic range of the
nanosensor: e.g., ultrahigh affinity sensors
such as FLIPglu170n�13 can provide nM
analyte per second per cell

Information content
(cells, tissues, or cell
populations)

Population average Population average, single cells, or
subpopulations of cells

Compartment specific Currently not available Targeting allows to specifically analyze
cytosolic and organellar levels and flux
across intracellular membranes

Temporal resolution 0.8 s intervals (39) Full frame acquisition is possible in
200–1000 ms intervals (cf. (51, 60); small
regions can be imaged at 10–30 Hz (53)

Suitability for dynamic
analysis

Good Excellent

Sensitivity to changes in
other parameters

N/A Sensor conformation may be affected by pH,
ionic strength, posttranslational
modification, binding to other proteins, or
proteolysis

(can be controlled for by using set of affinity
mutants; effect of pH can be determined in
vitro and corrections can be applied if in vivo
pH is monitored)

Invasiveness High Relatively low; however the additional ligand
buffer may affect the cell’s physiology

(can be evaluated by comparing wt and
transformant using 13C-fluxomics)

Suitability for high
throughput

Hundreds of mutants
(19)

Thousands of mutants, complete genomes
possible
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fitting of fluxes to the measured data, whereby the difference
between observed and simulated isotope spectra is minimized
(36). Essentially, this is a parameter fitting procedure where the
relation between unknown fluxes and measured data is described
by mathematical models of varying complexity. Most published
data sets were obtained from (quasi) steady-state growth in glu-
cose media, while other substrates remained largely unexplored
although they are principally amenable to the current methods. Its
strength, in particular with respect to FRET sensors, is the ability
to resolve fluxes through several competing or diverging pathways
such as in the ubiquitous central metabolism. If one accepts the
limitation that cells are cultured in a stable steady state, appropriate
isotope experiments typically resolve the distribution of flux
between competing pathways with an accuracy of about 5%
(5, 36). While standard 13C-flux methods are based on relatively
tedious experiments and data analysis, a simplified method based
on a direct and local interpretation of selected labeling patterns –
so-called flux ratio analysis – enables high-throughput monitoring
of intracellular flux distributions (37, 38).

A major limitation of most current methods is that they rely on
the detection of isotope patterns in amino acids bound in cell
proteins, which requires that these amino acids be actually synthe-
sized from a labeled source molecule, thus precluding the analysis
of non-growing cells or cells cultivated in complex media. A sec-
ond major disadvantage that also relates to pattern detection in
proteinogenic amino acids, is the restriction of current 13C-
methods to steady-state conditions. Analyzing metabolism under
biologically relevant dynamic conditions requires different meth-
ods. One of these is the detection of isotope patterns in free
intracellular intermediates, where an isotopic steady state can be
attained within minutes to a few hours, enabling dynamic analyses
at this time scale. To achieve higher dynamic time resolution,
alternative methods that measure during the period of isotopic
instationarity are currently under development (39, 40). The
down side is that these methods will be even more tedious than
the above 13C-flux methods. With the exception of certain in vivo
NMR experiments with a relatively low resolution and sensitivity,
essentially all 13C-methods are destructive.

FRET sensors typically analyze a single metabolite at a time
and they cannot detect flux changes unless there is a change in the
concentration of the metabolite. Multiplexing is possible by either
targeting sensors to different compartments and analyzing the
cellular regions separately or using sensors with separated spectral
properties. Even when there is an observable rate of concentration
change of a metabolic intermediate the way in which the change
relates to flux has to be studied on a case-by-case basis. The FRET
change reflects the sum of total flux change, which consists of all
possible components affecting the influx and efflux of the
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metabolite. In vivo glucose measurements in Arabidopsis roots
using glucose FRET sensors illustrate the point (Fig. 19.1) and
(41). The rate of glucose concentration change in the cytosol can
be calculated from the slope of the FRET change. This rate reflects
the influx (import/uptake and synthesis) and efflux (export, sub-
cellular transport, and metabolism) of glucose in the cytosol of
Arabidopsis root cells, provided the perfusion system is not limit-
ing. Additional experiments are required to establish how much
each of these components contributes to the measured rate. This
typically involves manipulation of the system with genetic or che-
mical (specific inhibitors) tools and/or the use of isotopes.
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Fig. 19.1. Glucose-induced FRET changes in the cytosol of intact Arabidopsis roots. The
FRET sensor FLIPglu-600m�13 with an affinity for glucose of 600 mM in stably
transformed rdr6-11 Arabidopsis plants (41) responds to perfusion with 20 mM glucose.
Top panel: Images of the root tip for the YFP and the CFP channels as well as the
ratiometric image with pseudocolor converted to grayscale are shown (at time 0). The
regions from which the quantitative data are calculated are shown on the ratiometric
image as black (1) and gray (2) boxes. Data from the white box (B) was used for the
background correction. Quantitative data were derived by pixel-by-pixel integration of
the regions in the ratiometric image. Bottom panel: The graph shows the ratio of eYFP
intensity divided by eCFP intensity (normalized to the staring ratio) for the two regions
(gray trace corresponds to gray box (2) after background subtraction and normalization,
black trace (1) corresponds to black box) at different time points (here 10 s intervals)
measured over 8 min. The bars on top of the trace give the concentration and the
duration of the glucose perfusion. The response is fully reversible. Note that accumula-
tion and elimination phases show different rate constants. Also note the low noise as
apparent from the smooth trace.
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The advantage of FRET sensors is their applicability for in vivo
determination of cellular, tissue-specific, and subcellular metabolite
concentration changes (29, 30, 41), measurement of steady-state
concentration of metabolites (35, 41), and screening of signaling
networks affecting metabolite concentrations in vivo (Haerizadeh
and Frommer, unpublished). Apparently, even imaging at low
magnification can provide cellular resolution (41). Since the sensors
are genetically encoded, they can be targeted to subcellular com-
partments as demonstrated for the glucose sensor, which by fusion
to a nuclear targeting sequence was successfully employed to mea-
sure nuclear glucose flux (29), or by fusion to an ER targeting and
retention sequence could be used to monitor glucose flux across the
ER membrane (31). Exocytosis of glutamate was monitored by
targeting and anchoring the glutamate sensor to the cell surface
(35). Apparently, extracellular analysis can simply by performed by
adding purified sensor to the cells or tissues of interest (42).

These attributes qualify FRET sensors uniquely for studies of
how and when the concentration or net flux of a metabolite varies
across an organ, tissue, or cell. Another great advantage of FRET
sensor technology is their applicability to large-scale screens of
chemicals or mutant collections. In the case of single cells, fluores-
cence microplate readers may be used instead of imaging to analyze
FRET responses of a large number of samples in a short time (43).

The use of FRET sensors already provided new insights into
metabolic processes. FRET sensors with different affinities for glu-
cose were used to show that the cytsolic glucose concentration in
soil-grown roots can drop to <100 nM in the absence of external
glucose supply in Arabidopsis roots (41). This estimate is much
lower than the previous estimation of cytosolic glucose concentra-
tions in heterotrophic tissues (potato tuber) measured using non-
aqueous fractionation (NAF) to provide subcellular resolution (44).
Concentration estimations using disruptive extraction and analysis
methods rely on estimations of cellular compartment volumes.
Farré et al. estimated the volumes from electron microscopy pictures
of cellular cross sections (44). The sensors were also used to carefully
characterize the protonophore-insensitive accumulation of glucose
and sucrose in root tips of Arabidopsis (45). FRET sensors measure
steady-state levels and detect concentration change directly in vivo
and are therefore superior tools for the analysis of factors affecting
metabolite concentrations in the cell of interest. They may even
allow more accurate estimation of subcellular compartment
volumes when combined with NAF analysis of total metabolite
amounts in subcellular compartments. FRET sensors also provide
a tool to test for the potential metabolite oscillations, as used to
analyze cytosolic calcium waves (46).

A detailed comparison of the specific advantages and draw-
backs of FRET sensor and 13C-flux technologies is presented in
Table 19.2.
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5. In Vivo FRET
Imaging in
Arabidopsis – A
How to Guide FRET can be measured either in a fluorimeter or by imaging.

Many excellent overviews over the use of FRET in biology have
been published (47–50). Quantitative analysis of FRET data
derived from imaging approaches has been used most extensively
to determine changes in calcium in neurobiology. Several excellent
how-to-guides have been published (51–53). While written for
applications in the animal field, the technical approach is highly
similar for plants as are the challenges, e.g., how to carry out
analyses in live organs. The reader is thus referred to these reviews
for details in the methodology. FRET sensors for calcium and
fluorescent indicators for pH have also been used by a small
number of plant labs (46, 54–57). Thus here, mainly aspects
relating to metabolite imaging will be covered.

5.1. Expression of FRET

Sensor Constructs in

Plants

Glucose FRET sensors have successfully been used to monitor glu-
cose levels in intact roots and in leaf slices of Arabidopsis (41). Stable
transgenic Arabidopsis lines for the FRET sensors of interest are
created using standard transformation protocols. Most calcium ima-
ging studies have been carried out in guard cells (46). Apparently,
FRET sensors are subject to gene silencing in Arabidopsis (41). This
has not precluded the analysis in guard cells since these cells, at least
when mature, are protected from gene silencing (58). Thus to be able
to monitor FRET sensors in other tissues, gene silencing has to be
overcome. This can be achieved either by the use of gene silencing
mutants (41) or by analyzing young seedlings at stages before silen-
cing has reduced fluorescence below levels necessary for obtaining
high-quality FRET images. Alternatively, it may be possible to use
cell-specific or regulated promoters to circumvent gene silencing.

For all of the metabolite sensors developed so far a series of
affinity mutants are available (e.g., for FLIPglu (41), FLIPE (35),
and FLIPPi (32)). It is recommended to use several affinity
mutants to exclude artifacts due to changes in other parameters
that may either affect the fluorophores or the recognition element.
If the FRET change I due to c change in analyte levels, the
response curves should shift according to the affinity of the sensors
used (cf. (41)). If affinity mutants of the sensor, which typically
differ only in a single amino acid, show identical responses, addi-
tional controls such as analysis for pH shifts may be necessary. pH
shifts can be monitored using fluorescent indicator proteins
expressed in control plants (56).

FRET is analyzed by determining the relative fluorescence
intensity of the two fluorophores, typically YFP and CFP. The
fluorescence intensity is measured with either a fluorimeter or a
fluorescence microscope.
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5.2. Instrumentation

for Imaging-Based

FRET Metabolite

Analysis in Plants

The FRET sensors for metabolites described here contain a recog-
nition element fused to two spectral variants of GFP. FRET
between CFP and YFP can be measured using a variety of methods
such as fluorescence lifetime imaging (FLIM), fluorescence recov-
ery after photobleaching (FRAP), anisotropy decay or simply by
rationing the relative fluorescence intensities of FRET donor
(CFP) and FRET acceptor (YFP). Due to the fixed molar ratio of
the two fluorophores, the simplest method, i.e., ratiometric ana-
lysis of emission intensities, is sufficient for most applications. The
signal-to-noise ratio of the described metabolite FRET sensors is
sufficient to use ‘‘poor human’s FRET’’, i.e., simple recording of
the emission intensities at two wavelength. More sophisticated
approaches may be recommended that correct for bleed-through
(direct excitation of the acceptor at excitation wavelength) or for
changes in sensor levels or proteolysis of the sensor (by normal-
ization to acceptor amount obtained by recording acceptor emis-
sion at the acceptor’s excitation wavelength) (59). It is important
to note that a ratio change cannot necessarily be attributed to a
change of FRET, e.g., during photobleaching or due to interfer-
ence of other parameters; the two GFP variants may differ in their
sensitivity to photobleaching or other parameter changes or
changes in the focal plane may mimic a FRET change. Inspection
of the raw data (individual fluorescence emission intensities and
correction as described above) will help identify potential artifacts.

Due to the low intrinsic noise of metabolic signals such as
glucose (Fig. 19.1 and (60)), the relatively slow rate changes
compared to calcium spikes together with the ability to express
the sensors to high levels in stably transformed plants allow the use
of simpler acquisition systems. Since the sensors can be targeted
genetically to subcellular compartments, epifluorescence imaging
is sufficient for most cases. Since spatial resolution is not relevant,
essentially a single or few pixels per cell are sufficient, thus allowing
pixel binning to enhance the signal-to-noise ratio. It is also possi-
ble to record FRET using a confocal microscope, e.g., to observe
spatial differences inside a cell.

For ratiometric FRET analysis the following instruments are
required: a microscope stand with fluorescence optics, a fluores-
cence excitation light source, appropriate filters, a filter switching
device or image splitter and a digital camera for acquisition of
emission, a perfusion system to be able to change the analyte levels
in the perfusion medium, and software for driving the instruments.
A complete and workable epifluorescence FRET imaging system
suitable for metabolite imaging can be assembled for below
$50,000. Apparently, if a suitable microscope and camera are
available, a FRET imaging system can be assembled at minimal
cost. Factors that determine the cost include quality of the stand,
number of objectives, sensitivity of the camera, the use of free or
commercial software, and the versatility of the devices such as fast
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multi-wavelength acquisition and computer-controlled perfusion.
Notwithstanding, systems are available that enable spectral ima-
ging to obtain full spectra of donor and acceptor as well as back-
ground fluorescence. Such data can then be used for spectral
unmixing to obtain reliable FRET data even in cells with signifi-
cant fluorescence background (61).

Epifluorescence microscopes are well suited for whole tissue
analysis as well as single cell analysis. Apparently, fluorescence inten-
sity drops when tissues deeper inside an organ are analyzed. How-
ever, when analyses are performed in roots expressing the sensor in
all cell types as described by Deuschle et al. (41), it is not possible to
determine cellular responses reliably. The use of specific promoters
active only in certain cell layers provides an alternative to the use of
confocal microscopes in order to obtain tissue layer or subcellular
resolution. Confocal microscopes have to be used with caution as
changes in focal plane due to swelling or shrinking of the cells as a
consequence of changes in the composition of the perfusion med-
ium may lead to artifacts. Tracking of the z-stacks may be required
to verify that the same z-section is analyzed. The apparent advantage
of confocal microscopes is that they reduce the background fluor-
escence originating from tissues outside the region of interest.

Several parameters affect the signal-to-noise ratio and thus the
quality of the data as well as the detection range, e.g., fluorescence
intensity over background and signal change of the sensor. Therefore
a lot of effort has been invested in improvements in sensor responses
(27, 60, 62). On the other hand, typically, the higher the emission
intensity, the higher the signal to noise. Due to the occurrence of
photobleaching, apparently too high excitation light may be dama-
ging. At low magnification, the amount of excitation light from a
normal fluorescence light source is limiting, thus lower angle/high-
magnification lenses, high-intensity light sources (Hg band at 435 nm
of mercury lamps, high-power Xenon lamps, high-power LED lights
or lasers), high-transmission filters (such as high-throughput modi-
fied magnetron sputter-coated filter sets), and high-sensitivity cam-
eras with on-chip multiplication gain have proven advantageous. If
high excitation leads to photobleaching, one may reduce excitation
intensity by neutral density filters, reducing the frequency of acquisi-
tion while increasing integration times for acquisition or camera gain.

To monitor responses of FRET glucose sensors (containing eCFP
as donor and Venus or eYFP as acceptor) we mount roots of intact
seedlings in a perfusion chamber (e.g., P1 Warner Instruments, USA)
and on a stage adapter (41, 60). A wide spectrum of open and closed
perfusion chambers suitable for different applications is available from
different companies. Ratio imaging is performed on an inverted fluor-
escence microscope (DM IRE2, Leica) with a QuantEM digital camera
(Roper) and a 20� oil objective (HC PL APO 20�/0.7IMM
CORR, Leica, Germany). Essentially, any high-quality inverted micro-
scope can be used for this purpose. Dual emission intensities are
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simultaneously recorded using a DualView with a dual CFP/YFP-ET
filter set (high-transmission modified magnetron sputter-coated filter
sets ET470/24m (470 indicates emission wavelength, /24 indicates
bandwidth); ET535/3, Chroma, USA) and Slidebook software (Intel-
ligent Imaging Innovations, Inc., USA). The Dualview (or similar
image splitter from other companies) enables simultaneous recording
of both emission wavelength without mechanical filter switching.
For most metabolic imaging studies, filter wheels that automatically
switch between the two emission wavelengths are equally suitable.
Software for FRET image acquisition is available from a variety of
commercial vendors, as scripts from individual labs, or can be imple-
mented using the free software package ImageJ (rsb.info.nih.gov/ij/).
The use of EM-gain cameras may be advantageous when analyzing
low-fluorescence samples or when using low magnification, but
in general is not crucial. Excitation (filter ET430/24x, Chroma)
is provided by a Lambda DG4 light source (Sutter Instruments;
http://www.sutter.com), which enables rapid switching between
several excitation wavelengths, a feature used when normalization
to YFP emission is intended. Simpler light sources are available from
a variety of vendors. Images are acquired within the linear detection
range of the camera and depend on the expression level. Exposure
times used for measuring glucose flux vary typically between 300 and
600 ms, with software binning 2 and at an EM gain of 300. Typical
values for acquisition with anon-EM gain camera such as the Cool-
snap HQ (Roper) have been described (41). Fluorescence intensities
for eCFP and eYFP are typically in the range of 2000–8000 and
6000–14,000, respectively. YFP, CFP, and ratio images of an Ara-
bidopsis root tip are shown in Fig. 19.1. The software allows to select
regions for analysis that can be freely chosen, e.g., to determine the
YFP/CFP ratio of individual cells or of groups of cells (grey and
black squares). Regions outside the tissue are analyzed for back-
ground subtraction (large white square). Image stacks derived
from time laps analysis are used to obtained traces of the ratio over
time (lower panel Fig. 19.1.) Typically the software provides an
option for real-time monitoring of images for the individual channels
(Fig. 19.1) and traces of the intensities for each fluorophore as well
as traces of the ratio for the individual regions that were selected.
Acquired image stacks can be analyzed by selecting different regions
and the quantitative data can be transferred to data analysis programs
for more detailed analysis (e.g., ASCI or spreadsheet export func-
tion). Some software also provide options to implement corrections,
e.g., bleed-through correction obtained from cells expressing CFP
and YFP alone as well as automatic background subtraction or
normalization to YFP excitation/emission.

5.3. Perfusion Chamber One of the difficulties of observing live organisms under the
microscope, especially in the context of quantitative imaging, is
the necessity to exclude movement under perfusion and during
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time lapse, while ensuring free exchange of the perfusion medium.
To prevent movement, roots were mounted on coverslips using
medical adhesive (stock no. 7730, Hollister). Alternatively, track-
ing software may be used to register images in stacks (e.g., stackreg
in ImageJ).

Control of perfusion buffer composition, temperature, flow
rate, and chamber volume is of paramount importance to ensure
reproducible experiments. If rates will be recorded rather than just
steady state, it is also important to be able to change the perfusion
media surrounding the specimen at velocities that are not limiting.
Minimizing the chamber volume and efficient peristaltic pump or
pressurized gravity-operated systems ensures that FRET response
is not limited by substrate supply. Precise event marking and
knowledge of the dead volume of the perfusion system (time
until new buffer reaches cells) are important for correlating the
response to the change in perfusion. Computer control over the
perfusion system and TTL-linked acquisition to the valves of the
perfusion system increase the data quality. Root perfusions as
shown in Fig. 19.1 are performed with full nutrient medium
containing typical macro- and micronutrients buffered with
20 mM MES to pH 5.8 at 3 ml/min containing the molecule of
interest. Apparently accessibility of the perfusion medium to the
tissue is essential. Therefore roots are apparently ideal objects. For
analysis of other organs such as hypocotyls, leaf, or stem, access to
the perfusion medium needs to be ensured, e.g., by removing the
cuticle, by using cuticle mutants, or by using organ slices (41).

5.4. Analysis of FRET

Data

Baseline shifts of the FRET response can be corrected using
second- or third-order polynomial fits of the ratio measured in
the absence of treatment. The obtained function describes the
baseline aberration (photobleaching) as a function of time during
perfusion. To correct for this effect, the difference between the
ratio at the beginning of the experiment r(0) and the baseline
aberration f(t) is calculated at each time point of the measurement
and added to the value of the measured ratio at the respective time
point r(t): rcorr(t) ¼ r(t) þ [r(0) � f(t)] (63).

Example or flux calculation from FRET slope data: the cyto-
solic glucose concentration can be calculated using the equation:
[gluc]cytosol ¼ Kd � (r � 1)/(Rmax � r). Rmax is the maximum
�ratio, which can be determined by measurement of the ratio at
95% saturation, Kd is the in vitro glucose binding affinity of the
sensor, and r is the �ratio at each glucose concentration. The in
vivo apparent K0.5 of each nanosensor can be determined by fitting
to the Michaelis–Menten equation; r ¼ [gluc] � Rmax/(K0.5 þ
[gluc]); [gluc] is extracellular glucose concentration; and r is the
initial ratio change rate after glucose loading (�ratio/s). This
calculation relies on the assumption that the sensor has the same
Kd in vivo as in vitro. To determine the initial flux rate in vivo, the
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initial accumulation rate is calculated by using time-ratio plot
2–20 s after glucose loading (provided sensor dynamics and perfu-
sion are not limiting.

6. 13C-fluxomics –
How-to-Guides

Recent how-to-guides to 13C-fluxomics can be found for local flux
ratio analysis by Nanchen et al. (4) and for 13C-flux balancing by
Ratcliffe and Shachar-Hill (8).
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Chapter 20

Democratization and Integration of Genomic Profiling Tools

Michael R. Sussman, Edward L. Huttlin, and Dana J. Wohlbach

Abstract

Systems biology is a comprehensive means of creating a complete understanding of how all components of
an organism work together to maintain and procreate life. By quantitatively profiling one at a time, the
effect of thousands and millions of genetic and environmental perturbations on the cell, systems biologists
are attempting to recreate and measure the effect of the many different states that have been explored
during the 3 billion years in which life has evolved. A key aspect of this work is the development of
innovative new approaches to quantify changes in the transcriptome, proteome, and metabolome. In this
chapter we provide a review and evaluation of several genomic profiling techniques used in plant systems
biology as well as make recommendations for future progress in their use and integration.

Key words: Transcriptomics, proteomics, metabolomics.

1. Introduction

Integration of data derived from transcriptome, proteome, and
metabolome studies is one of the critical objectives of systems
biology. However, before this goal can be achieved, the methods
of data acquisition and analysis for each of these individual tech-
niques must be optimized and standardized. Whereas transcrip-
tome profiling via microarray analysis is fairly well established, in
terms of both experimental and statistical methods, comparative
advancement in proteome and metabolome studies is still
ongoing. One of the key considerations in developing systems
biology approaches is optimizing the input of money and time
with the output of usable data. Typically, technologies for profil-
ing RNA, proteins, and metabolites start out as specialized and
expensive tools that are only available to large labs with ample
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resources. This is a regrettable situation, and recent advances in
several fields offer the promise of ‘‘democratizing’’ some of these
technologies. Once these techniques become easy, affordable,
and fast, the availability to all researchers regardless of funding
level can skyrocket, and the data stream increases. Finally, as more
systems-wide data are generated, it becomes necessary to care-
fully consider how these data can be integrated into the other
‘‘phenotyping’’ tools that a typical systems biologist would use.
In this chapter, we describe some of the methods emerging in the
fields of transcriptomics, proteomics, and metabolomics and
then speculate on ways of integrating data from these types of
studies.

2. The Arabidopsis
Transcriptome and
the AtMegaCluster

Transcriptomics, the study of the expression levels of all the RNAs
in a cell, is probably the most ubiquitous of all the available systems
biology approaches. Although we will not devote space in this
chapter to detailing the methods involved in a microarray study,
there are several excellent reviews available on the subject
(e.g., 1, 2), as well as other chapters in this book. The community
of Arabidopsis researchers benefits from a well-curated set of gene
expression data in the AtGenExpress microarray database (3–6).
This database is a repository for data derived from more than
1,300 microarrays representing an exhaustive variety of experi-
mental conditions, including environmental perturbations,
pathogen interactions, hormone and chemical treatment, as
well as different genetic modifications, ecotypes, tissue types,
and Arabidopsis developmental stages. Additionally, several dif-
ferent tools for easy visualization and data analysis are available,
such as the Genevestigator (7–9), which facilitates co-expression
analysis. These tools, and others like it, employ meta-analysis
techniques to summarize gene expression information, providing
the researcher with different methods of interpreting and analyz-
ing data.

Wohlbach et al. (10) recently demonstrated the utility of
such an approach to derive biologically relevant clusters of
genes out of a hierarchical clustering by creating what they
termed the AtMegaCluster (Fig. 20.1). The AtMegaCluster
combines over 1,700 publicly available microarray experiments
into a large database to facilitate gene co-expression analysis.
Because these gene expression experiments had been performed
at multiple different labs, Wohlbach et al. (10) obtained raw
data and used the robust multi-array average (RMA) method
(11–14), which corrects arrays for background, normalizes
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arrays based on the normal distribution, and uses a linear model
to estimate log scale expression values, to preprocess all the
microarray data in one set. The necessity of this kind of normal-
ization illustrates one of the primary difficulties manifest in sys-
tems biology approaches: the difficulty of combining data
obtained from different labs.

A useful outcome of this exercise was the observation that
AtHK1, the gene encoding a plasma membrane histidine kinase
that appears to act as a major osmosensor, is co-transcriptionally
regulated together with the genes encoding many Arabidopsis
response regulators (ARRs). The ARRs represent the third protein
in the two-component signaling pathway that connects the
AtHK1 sensory protein at the plasma membrane with a gene
expression response in the nucleus. The similarity in expression
profiles between AtHK1 and the ARRs was not obvious in any
one experiment, but could ONLY be revealed via the
AtMegaCluster analysis. Also interesting was the observation that
co-transcriptionally regulated with AtHK1 is a gene encoding a

Fig. 20.1. The AtMegaCluster displays hierarchical clustering of Arabidopsis thaliana microarray experiments and genes.
Experiments, represented on the horizontal axis, were grouped into eight clusters according to the fold change values of
genes and have been named according to the classification of the majority of experiments in that cluster. Genes,
represented on the vertical axis, were grouped into five clusters according to their fold change values and have been
named according to the functional category of the majority of genes in that cluster. Induced fold changes are in magenta;
repressed fold changes are in green. From (10).
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protein with no sequence homology to any known protein, poten-
tially representing a previously unknown member of the AtHK1
signaling pathway.

As illustrated by the AtMegaCluster, an obvious application of
co-expression analysis is to identify novel members of known signal-
ing pathways. Indeed, as over half of the genes in the Arabidopsis
genome remain unclassified, a major goal of functional genomics
studies is to assign putative functional classification to genes on the
basis of sequence or expression similarities. Co-expression studies can
be valuable when a gene of unknown function clusters next to a gene
of known function, because genes in biological pathways tend to
group together. For example, the AtMegaCluster was able to identify
five distinct clusters of genes with distinct patterns of functional
enrichment (Fig. 20.1). Gene cluster A contained 2,039 genes, of
which approximately 55% were unclassified and another 15% were
unclassified with no known homolog in Arabidopsis. All other clusters
also contained approximately 50% unclassified genes; however cluster
A was significantly (p ¼ 4.64e-08) enriched for these genes. Gene
cluster B contained 2,023 genes significantly (p¼ 6.07e-26) enriched
for environmental information processing functions, such as signal
transduction and ligand–receptor interaction. Gene cluster C con-
tained 2,370 genes with an enrichment for metabolism function,
including energy metabolism (p ¼ 3.37e-14), lipid metabolism
(p ¼ 1.83e-07), and amino acid metabolism (p ¼ 2.06e-08). Gene
cluster D contained 1,133 genes with significant (p ¼ 2.62e-13)
enrichment for cellular processes such as cell communication, cell
growth, and cell death. Finally, gene cluster E contained 1,357 genes
functionally enriched for genetic information processing (p¼ 4.00e-
191), including transcription, translation, and post-translational pro-
cesses such as protein folding, sorting and degradation, as well as
nucleotide metabolism (p ¼ 8.53e-23).

Interestingly, the gene cluster A of the AtMegaCluster revealed that
for a large number of Arabidopsis genes with no known homolog, co-
expression analysis fails to group genes with unknown function near
genes with known function. Many of these unknown genes might
comprise undiscovered functional gene families whose expression pat-
terns are unique. Therefore, integrating data from additional systems
biology techniques, including proteome and metabolome profiling, may
be necessary to elucidate functions of these currently unknown genes.

3. Proteome
Profiling

While the central goal of transcriptomics is to monitor expression
of each gene in the genome, proteomics is concerned with mon-
itoring changes among proteins in a biological system. Two
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primary analytical challenges arise in proteomics experiments:
identification of proteins in complex mixtures and quantitative
comparison of each protein’s abundance under different biological
conditions. Each of these challenges is addressed by mass spectro-
metry in the ‘‘shotgun’’ proteomics strategy that has become the
standard for the field. Though a complete introduction to proteo-
mics is beyond the scope of this chapter, see Domon and Aebersold
(15) for a recent review. Typically, proteins are digested using trypsin
and individual peptides are identified based on their sequence derived
from MS/MS fragmentation patterns (16, 17). Quantification of
each peptide usually employs one of several isotopic labeling strate-
gies including ICAT (18), ITRAQ (19), enzymatic labeling with 18O
(20), SILAC (21), and metabolic labeling with 15N (22). For a
complete discussion of plant quantitative proteomics, see a recent
review by Thelen and Peck (23). Much like transcriptomics, the final
output of a quantitative proteomics experiment is generally a list of
observed proteins with ratios reflecting the relative abundance of each
protein across each biological sample.

Though proteomics and transcriptomics share similar experi-
mental goals, some basic differences in underlying technology
influence their performance. One fundamental difference is cover-
age: while a typical microarray experiment will report expression
levels for tens of thousands of genes, the most comprehensive
quantitative proteomics experiments to date have been limited to
around 5,000 proteins (24). Though higher numbers of protein
identifications have been achieved, with over 13,000 unique pro-
teins identified across multiple Arabidopsis tissues in one report
(25), this experiment was not quantitative in nature and required
an extremely large number of LC-MS analyses. Though this
remarkable survey is a landmark for plant proteomics, such perfor-
mance cannot presently be expected on a routine basis. Typical
proteomics analyses tend to favor highly abundant proteins such as
metabolic enzymes and heat shock proteins, while low-abundance
proteins such as transcription factors are less frequently detected.
While some of this difference can be attributed to the fact that
proteomics is a less mature field whose technology is still rapidly
evolving, several fundamental aspects are responsible as well. First,
whereas DNA microarrays allow the simultaneous measurement of
thousands of genes, proteomics measurements are inherently serial
in nature: each peptide from each protein must be analyzed indi-
vidually. Second, while PCR can be used to amplify small nucleic
acid samples prior to analysis, no analogous technique is available
for proteins. This makes low-abundance species more difficult to
detect. Third, the chemical diversity of proteins is greater than the
chemical diversity of mRNA molecules, complicating develop-
ment of comprehensive isolation and detection methods. Given
the differences in performance for each of these techniques, the
challenge is to employ both proteomic and transcriptomic
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technologies in a way that capitalizes on the relative strengths of
each to attain the most complete description of the biological
system possible.

Perhaps the most obvious experimental approach for proteo-
mics is to survey changes in protein abundance in an untargeted
manner analogous to a typical microarray experiment. When
microarray and proteomics results are compared under the same
conditions, a moderate correlation is observed between the two
(26). This is not surprising, as the abundance of a single form of
any particular protein depends on its synthesis and degradation
rates, as well as the rates of any post-translational modifications.
While proteomics measurements reflect all of these biological
processes, microarrays only indirectly measure the effects of
mRNA synthesis. Though these kinds of proteomics experiments
may provide interesting results, especially when applied to systems
that are post-transcriptionally regulated, perhaps the greatest
potential for novel biological insight comes from other types of
proteomics studies. Several alternative experimental strategies for
proteomics are described below. Though focused on different
aspects of protein systems biology, each requires direct character-
ization of proteins to reveal properties that cannot generally be
inferred from DNA microarrays or other kinds of large-scale bio-
logical data. Each of these approaches could provide insight into
important areas of plant systems biology and likely offer the great-
est potential return on one’s investment of experimental resources.

One particularly useful application of proteomics technology is to
characterize the make-up and dynamics of protein complexes. This
may be done by using antibodies to immunoprecipitate the protein of
interest along with other interacting proteins, either under native
conditions or after chemical crosslinking (27). These samples are
then digested and all proteins are identified via mass spectrometry.
With appropriate controls to distinguish specific and nonspecific inter-
actions, patterns of protein–protein interactions and protein complexes
can be revealed (28). By combining this technique with a quantitation
strategy such as SILAC or another metabolic labeling approach, one
can directly compare the make-up of specific protein complexes under
different biological conditions. This approach has been used to char-
acterize protein–protein interactions within EGF signaling (29), as well
as selected yeast and Drosophila complexes (30).

Recently protein degradation has been recognized as a critical
aspect of many biological systems. Its importance in plant biology
is especially clear, thanks to the recent demonstration that auxin
exerts many of its effects through modulated degradation of spe-
cific proteins (3, 32). Protein turnover can be directly monitored
on a proteomic scale by following the incorporation of stable
isotopes such as 13C and 15N into each protein after their intro-
duction into a living organism through their diet or media (33).
Though this experimental approach has been most frequently
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applied in single-celled organisms such as yeast (34) and bacteria
(35), it has also been applied in relatively complex multicellular
organisms including the chicken (36). Though these kinds of
proteomic turnover experiments have not yet been reported in
plants, our laboratory and others have demonstrated metabolic
labeling of cultured plant cells (37–41) or intact plants (42–45) for
traditional quantitative proteomics experiments. By demonstrat-
ing that complete labeling of plants with 13C, 15N, or various
isotopically labeled amino acids may be readily achieved, this
work indicates that similar protein turnover studies are technically
feasible in plants as well. There is a strong foundation for future
studies that promise to shed light on important biological pro-
cesses in plants that are otherwise invisible to systems biology.

Because peptides are typically sequenced through MS/MS frag-
mentation, one can often directly observe modified residues based on
fragmentation patterns. Thus, modified forms of specific peptides can
be identified and compared under diverse biological conditions. This
technology potentially allows the direct observation of signaling
cascades and other important aspects of biological regulation and
cellular communication. Though some are more amenable to mass
spectrometric analysis than others, a wide variety of post-translational
modifications have been characterized in plants, including ubiquiti-
nation (46), glycosylation (47), and phosphorylation (48). Due to its
biological importance, we now briefly consider phosphorylation as
an illustration of some issues that can arise from proteomic study
of post-translational modifications. In spite of unique analytical
challenges, recent technological advances should enable researchers
to study patterns of phosphorylation at a truly global scale.

One primary challenge for studying phosphorylation of pro-
teins is low analyte abundance. Only a small fraction of most
phosphorylation sites are modified at any particular time. Further-
more, addition of a phosphate generally inhibits ionization of
phosphopeptides in the mass spectrometer, reducing their appar-
ent signal. As a result, detection of phosphopeptides among other
unmodified species is difficult. Fortunately, a number of strategies
for selective isolation of phosphopeptides have been introduced.
Though they are less useful to plant biologists, good antibodies are
available that can be used to immunoprecipitate peptides contain-
ing phosphotyrosine residues (49). Peptides containing phospho-
serine and phosphothreonine residues are isolated using their
affinity for certain transition metals, via immobilized metal affinity
chromatography (IMAC) (50–53) or titanium oxide chromatogra-
phy (54). In some cases, anion or cation exchange chromatography
is also used as a preliminary step to separate phosphopeptides from
other tryptic peptides based on differences in their ionic charge in
solution (52, 55, 56). By allowing the isolation of enriched phos-
phopeptide populations, these techniques greatly enhance our
detection ability.
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Another challenge for phosphoproteomics is that
phosphopeptides are difficult to sequence via MS/MS using tradi-
tional methods. Typically peptides are fragmented via a process
called collision-induced dissociation, in which each peptide col-
lides with inert gaseous molecules, picking up energy with each
collision until enough energy has been absorbed to break a che-
mical bond. While this approach allows fragmentation all along the
peptide backbone for unmodified peptides and often gives rich
MS/MS spectra, phosphopeptides almost exclusively fragment by
losing phosphate. The resulting MS/MS spectra often contain too
few fragments to allow identification of the phosphopeptide’s
sequence. However, two alternative methods have been intro-
duced that are much more effective for sequencing phosphopep-
tides: electron capture dissociation (57, 58) and electron transfer
dissociation (59). Both of these approaches induce fragmentation
through donation of an electron to each peptide molecule, causing
destabilization and rapid dissociation. Loss of phosphate is not
favored via this mechanism, so MS/MS spectra from phosphopep-
tides are much richer and more easily sequenced. Now that both
ETD and ECD are available on commercial instruments, excellent
tools for phosphoproteomics are available for use by many
researchers.

A final consideration for characterization of post-translational
modifications is determining the relative abundances of modified
and unmodified forms. One general approach that may be used for
virtually any modification is to introduce isotopically labeled syn-
thetic forms of both modified and unmodified peptides into the
sample at known amounts and use the signal from these internal
standards to determine the quantities of modified and unmodified
peptides in the original sample. Typically the modified and
unmodified peptides are quantified on triple-quadrupole mass
spectrometers using a technique called multiple reaction monitor-
ing (MRM) that provides especially accurate quantification. This
technique was originally described in a proteomic context for
peptides by Gerber and co-workers (60), though it is based on a
standard method of small molecule quantitation in drug analysis
that has been in use for decades. In the case of phosphopeptides,
our laboratory has also introduced an alternative strategy for
determining relative stoichiometries of phosphorylation sites
using a combination of isotopic labeling and phosphatase treat-
ment (61). It is clear that in plant systems biology, mass spectro-
metry-based proteomics is an emerging area that offers great
promise in revealing important mechanisms that alter growth
and development. Together with quantitative measurements of
mRNA and metabolome abundance, we can achieve a more com-
prehensive picture of how the plant’s suite of proteins respond to,
and direct, changes in the transcriptome and metabolome.
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4. ‘‘Sequencing’’
the Metabolome

Metabolomics is the study of small molecules in an organism and is
usually operationally defined to include those species with molecular
weights less than approximately 1,000 Da. Like transcriptomics and
proteomics, the field of metabolomics is concerned with describing
global changes within biological systems. Though relatively new
compared to other approaches for systems biology, metabolomics is
already an important tool for systems biologists. By focusing on small
molecules and metabolites in the cell, one can observe a wide variety
of essential cellular processes in a way that is largely orthogonal to
proteomic and transcriptomic approaches. Thus metabolomics illu-
minates aspects of the biological system that would otherwise be
invisible and in conjunction with other systems biology techniques
provides a relatively complete characterization of biological systems.

Though monitoring the small molecule portion of biological
systems is an essential aspect of systems biology, the complexity of
the metabolome presents a variety of practical challenges that must
be addressed experimentally. Perhaps the greatest of these chal-
lenges is the remarkable chemical diversity of the metabolome.
Although they contain instructions for synthesis of a dizzying array
of biological molecules, at a chemical level, all mRNA molecules
are fairly similar: all are polymers of the same four basic chemical
building blocks with similar overall structures. Though proteins
are more variable, being made of 20 different amino acids with
more widely varying chemical properties, they still share many
fundamental chemical properties. This is especially true of peptides
after tryptic digestion. As described above, these chemical simila-
rities of peptides and mRNA molecules can be exploited to develop
general sample preparation and analysis procedures that will be
appropriate for most of the target biomolecules. In contrast, the
metabolome includes all kinds of chemical compounds, including
amino acids, sugars, lipids, and nucleotides. These compounds
range from very hydrophobic to hydrophilic; some are volatile;
some are chemically unstable. This range of chemical properties
makes studying the metabolome in its entirety the most challen-
ging of all phenotypes.

The second fundamental problem in metabolomics is deter-
mining the range of compounds that could exist in any particular
organism. This is significantly different from the proteome and the
transcriptome, the sizes of which are bounded to a first approx-
imation based on gene sequences that are found in the genome (of
course, neglecting post-translational modifications and splice var-
iants, respectively). Current estimates indicate that metabolome
size varies considerably from species to species, from yeast which
may have around 600 metabolites (62) to humans, for whom
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estimates range from around 2,500 metabolites to over 25,000
(63). It has been estimated that 90,000–200,000 different meta-
bolites may be found across the plant kingdom, though any indi-
vidual species would only contain a small fraction of that number
(64). Each metabolite must be individually identified de novo. Of
course, since most of the drugs and nutrients on which human life
depends are made in plants, there is a large motivation to tackle
this challenging field.

One direct consequence of chemical diversity in the metabo-
lome is that no single set of sample preparation conditions will
allow simultaneous observation of all compounds. Different and
often incompatible extraction and isolation procedures must be
used for different classes of compounds, requiring multiple rounds
of sample preparation on multiple replicate samples for compre-
hensive metabolome characterization. In practice, researchers
often choose to focus their analysis on a particular subset of the
metabolome with similar chemical properties, such as fatty acids or
flavonoids. Multiple laboratories have evaluated the performance
of a range of different extraction protocols for different classes of
metabolites (65–67).

Another consequence of chemical diversity is that no single
analytical platform is suitable for characterization of all metabo-
lites. As a result, multiple methods must be used to identify and
quantify different metabolic classes. Each method has its own
advantages and disadvantages. NMR spectrometry is one mainstay
of metabolomics research. Though limited by poor sensitivity, 1-D
and 2-D NMR experiments provide tremendous structural infor-
mation for identifying unknown metabolites. Typically up to a few
dozen of the most abundant molecules in a complex mixture may
be identified. Additionally, NMR can be used for quantification of
selected metabolites. Usually this has been done via 1-D 1H-
NMR, though researchers at UW-Madison have recently
demonstrated an alternative technique that allows rapid and accu-
rate quantification of dozens of metabolites in complex mixtures
via 2-D 1H-13C NMR experiments (68).

Another mainstay of metabolomics is mass spectrometry,
coupled to various chromatographic techniques (69). While
these techniques usually provide somewhat less structural informa-
tion on each compound than NMR, they demonstrate vastly
superior sensitivity. GC-MS has been used to identify and quantify
unknown small molecules for decades. This approach is especially
appropriate for volatile compounds and the combination of precise
separation via GC and fragmentation by electron impact ionization
provides considerable information for identifying unknowns.
However, many biological compounds require derivatization
prior to GC-MS analysis, making this approach less desirable for
some classes of compounds. LC-MS techniques are also widely
used for metabolomics analysis, employing multiple types of
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chromatography. Both hydrophilic interaction chromatography
(HILIC) and standard reversed phase chromatography can be
used. While reversed phase chromatography is good for many
classes of molecules including amino acids, HILIC is especially
useful for analysis of especially water-soluble analytes such as
sugars (70). Furthermore, the mass spectrometers can be operated
in either positive or negative ion mode to accommodate a wider
variety of chemical compounds (71). LC-MS experiments gener-
ally provide intact mass measurements for each metabolite and
possible MS/MS fragmentation spectra as well. Though resources
for identification of metabolites via LC-MS are currently less
developed, a variety of tools are available for quantification of
unknown metabolites via LC-MS. One particularly useful tool is
XCMS, a freely distributed program for aligning multiple LC-MS
analyses and comparing abundances of selected compounds (72).

Given the range of technology that is available, several distinct
experimental strategies guide metabolomics experiments. Since it
is impractical to survey the metabolome in a comprehensive way,
many researchers choose instead to take a more targeted approach,
focusing specifically on selected classes of molecules such as fatty
acids or flavonoids, or alternatively selecting specific important
metabolites for targeted analyses. Though by definition these
targeted approaches do not provide a comprehensive picture of
all of metabolism, by carefully choosing particular metabolites
based on a specific experimental question one may design an
experiment that will reveal the status of key metabolic pathways.
This can be one of the most efficient means of deriving biological
information from metabolomics experiments.

In contrast to the targeted metabolomics approach, other
researchers are attempting a comprehensive characterization of
all metabolites in a number of organisms. Much like the various
genome projects, whose goals were to identify the sequences of all
genes making up each organism, the goal of these metabolomics
projects is to use a variety of analytical techniques to create a
database of metabolites that have been identified in each organism,
along with a variety of experimental data from each molecule that
can be used in subsequent experiments to confirm its observation.
Several of these kinds of database efforts have been undertaken,
though the organisms each targets and the types of experimental
evidence and information they contain vary. Some of the earliest
and most comprehensive of these databases were created for GC-
MS. These libraries generally contain GC retention times for each
compound as well as representative electron impact mass spectra
displaying fragmentation patterns for each molecule. A variety of
commercial libraries are available, as well as libraries from NIST
(73) and an open-access database that is specifically focused on
GC-MS data for metabolomics called the Golm Metabolome
Database (74). Researchers at Scripps Research Institute have
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also created a separate database called METLIN that contains LC-
MS data as well as high-resolution Fourier transform mass spectral
data and MS/MS spectra for a variety of metabolites (75).

While the previous database efforts have focused on mass
spectrometry data, multiple efforts have been established that
contain mass spectra and NMR spectra as well as other kinds of
physico-chemical data. Canadian researchers have recently estab-
lished the Human Metabolome Database, which contains a wide
assortment of data on human metabolites and metabolic pathways
(76). This database includes data from over 2,500 compounds that
was mined from the primary literature, other smaller database
efforts, and experimental data including 1-D and 2-D NMR spec-
tra as well as MS and MS/MS spectra. Separately, the Madison
Metabolomics Consortium has established another database con-
taining NMR and MS data for metabolites from a variety of
different species (77). This database contains a variety of informa-
tion on over 20,000 different compounds, including data from
NMR experiments, as well as mass spectral data and information
regarding chromatographic behavior of each compound on a vari-
ety of different column formats. This database is fully accessible via
the Internet. The long-term goal of all of these metabolomics
database projects is to compile sufficient information to allow
identification of metabolites during future untargeted survey
experiments based on each compound’s chromatographic proper-
ties as well as a variety of mass spectral and NMR data.

While the aforementioned metabolite database projects are
making significant progress, at the present time it is generally not
possible to identify many metabolites of interest from general
survey experiments using only these data. As a result, researchers
have developed a third strategy for metabolome characterization.
In these experiments, mass spectrometry-based survey experi-
ments are performed to identify ‘‘features’’ and compare their
intensities across multiple biological samples. Each feature is
defined by a unique mass and retention time under specific LC
conditions. Following statistical analysis to identify features whose
abundances appear to vary with respect to the biological variable of
interest, a subset of features are identified through an iterative
process of comparison with standards.

The process of identifying unknown compounds can be a
painstaking one. After identifying a feature of interest, the first
step is to identify possible molecular formulas that would match
the observed mass. When the observed mass is known to sufficient
accuracy, there are often only limited numbers of combinations of
atoms that could account for the observed mass. Based on the
observed mass as well as some basic rules for eliminating formulas
that are chemically impossible (78), it is often possible for features
of small to medium mass to be assigned to particular molecular
formulas. We have found that we can use metabolic labeling of
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selected organisms such as Arabidopsis to aid in formula
assignment. After characterizing natural abundance plants as well
as 15N-labeled and 13C-labeled plants, we can compare the masses
of each unknown feature under different labeling conditions to
determine the numbers of nitrogen and carbon atoms in each
compound (79). Once these elemental counts are fixed, there are
relatively few formulas that will fit the observed masses at a reason-
able (3 ppm) mass error. This approach can allow assignment of
unique formulas to features up to masses well above 1,000 Da,
greatly aiding in formula assignment for metabolites of all sizes.

Once formulas have been identified that are consistent with
the feature in question, it must then be determined which com-
pound was actually observed. This is done by purchasing and
analyzing purified standards for each compound in question and
comparing retention times, MS/MS fragmentation spectra, and
other available data to confirm the identity of the feature in the
original sample. In practice, this can be a tedious process, as there
are often many possible compounds to consider. Furthermore, not
all metabolites may be purchased, meaning that some standards
must be synthesized or may simply be unavailable for comparison.
Even in cases where only a single molecular formula matches the
observed mass, one must remember that multiple isomers may
exist that could account for the observed signal. This is especially
problematic for sugars. In these cases, confirmation of a com-
pound’s identity via analysis of standards is essential.

Though metabolomics is currently the newest and least
mature of the systems biology approaches, the rapid development
of databases and collection of data on many standard metabolites
should streamline the process of metabolite identification in the
years to come. With cooperation, researchers’ painstaking efforts
to identify unknown compounds via characterization of standards
can greatly aid the development of comprehensive metabolome
databases. Though metabolomics already plays an important role
in systems biology, its significance will only grow as tools for its
systematic study mature.

5. Integrating
Different Types
of Profiling Data

Systematic integration of complex types of profiling data is an
obvious next step in a systems biology approach and one that will
facilitate further data mining in order to fully describe genome-
wide cellular dynamics and biochemical regulation. In the future,
a complete understanding of these ‘‘systems-wide phenotypes’’
will allow us to group phenotypes with the types of perturbations
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(e.g., environmental, genetic) that create them. Then, utilizing this
type of data will allow us to answer questions like ‘‘what different
conditions result in the activation of a particular metabolic path-
way?’’ An alternate way of framing this approach is to consider how
many different ways the system of a plant can be altered before we
have described the complete complement of plant phenotypes.

To address this question in a purely hypothetical manner,
consider that there are approximately 28,000 genes contributing
to a given phenotype in Arabidopsis. Imagine that the phenotype
we wish to examine is the complete gene expression profile of a
plant. If we assume that all the genes act completely indepen-
dently, and that there are three possible states for the expression
of a given gene (increased, decreased, or no change), the number
of different possible patterns of gene expression is 328,000, a num-
ber so high, it exceeds the number of atoms in the universe. On the
other hand, if ALL of the 28,000 genes act in concert, there is only
one phenotype. Obviously, the answer lies somewhere in between,
but where?

We can create plants with 28,000 gene knockouts, and then
make every possible combination of multiple knockouts, which is a
huge number. Furthermore, we can apply various different envir-
onmental or chemical challenges (nutrient stress, hormone appli-
cation, light changes, temperature changes, etc.), and then we can
start making multiple stacks of mutations and environmental
changes and so again, the number of possible perturbations
explodes. In any case, the reductionist approach that we use in
the lab seems most amenable to discovering what genetic and
environmental changes cause the biggest changes in phenotype.
That is, phenotype discovery should begin with conditions that
cause large morphological and developmental changes, and should
then be refined to examine more subtle changes, such as those that
can be seen only at the molecular level (e.g., on a DNA microarray
or through a metabolome analysis).

The study of plant systems biology will begin to approach its
fullest potential only when all these types of studies are integrated.
Although some studies have attempted to integrate analysis of
metabolites, proteins, and RNA (80–82), this aspect of the field
is largely in its infancy, due to several issues, including data quality
and the availability of statistical methods and algorithms that can
address the complexity of such data to extract usable information.
Below, we describe some of these important considerations and
then highlight some methods for integrating data from various
high-throughput studies.

5.1. Data Quality The quality of data and the validity of conclusions drawn from
systems biology data are dependent upon the care with which the
initial experiments were designed. Although this is certainly true
with any experimental method, the importance of experimental
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design is perhaps no more important than in an approach that
seeks to integrate many different types of data. In any systems
biology study where complex methods of sample processing and
data acquisition are utilized, both technical replicates, which
represent multiple measurements taken from a single biological
sample, and biological replicates, which represent measurements
taken from multiple biological samples, can be crucial. Technical
replicates allow the researcher to assess variability inherent only in
the measurements, while biological replicates allow the
researcher to estimate the effect of variability between biological
samples. Therefore, when the aim of a study is to draw conclu-
sions about populations, rather than individuals, biological repli-
cates are a necessity. In statistical terms, the power of a study is
defined as the probability of rejecting a false null hypothesis.
Although many different methods of determining power exist
(see also the chapter by Gadbury et al. in this volume), in general,
including more replicates in a study increases the statistical power
for that study. Determining the optimal number of replicates to
provide adequate statistical power, while still considering the
availability of resources including money and time, is a challen-
ging question but one that must be addressed in a systems biol-
ogy approach.

In particular, when combining data from a variety of studies,
reducing extraneous factors that might confound analysis is extre-
mely important. Furthermore, the use of complex technologies
such as transcriptome, proteome, or metabolome analysis might
necessitate collaborations between different labs with complemen-
tary expertise in different techniques, and so careful experimental
design and oversight is of fundamental import. For example,
biological sample collection should ideally be performed in large
batch using well-established methods and then divided so that the
same biological sample is processed using these different methods.
Additionally, replicate samples should be analyzed by the same lab
and by the same researcher, ideally on the same day, so as to
minimize sample handling differences.

5.2. Data Analysis Whether the researcher is interested in integrating multiple gene
expression studies from multiple labs, as in the case of the AtMega-
Cluster, or in integrating genomic, proteomic, and metabolomic
studies for a single biological question, data preprocessing to
reduce systematic noise and variation is essential. For microarray
analysis, this might include data normalization, data transforma-
tion, filtering, or background subtraction, and analogous methods
exist for proteome and metabolome studies; especially when com-
bining multiple studies for large-scale analysis, this step is extre-
mely important to allow variation inherent in the data to be
reduced before further analysis.
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The final step in data analysis on a systems biology scale is to
integrate information from different types of studies and classify
the objects under study (e.g., genes from a microarray study or
small molecules from a metabolome study) into different cate-
gories. Popular methods include data clustering via hierarchical
methods or principal components analysis (PCA) (for review see
(1)), and some groups studying plant systems biology have begun
integrating different types of -omics data using these approaches
(83–85). As the field of systems biology advances, we will surely
see many advances on this front.

6. Future
Challenges

Although systems biology analysis strategies like those described
above can provide new models and hypotheses as part of a dis-
covery engine, it is important to recognize that conclusions made
from such approaches are predictions that should be rigorously
tested in follow-up experiments. It is possible for statistical ana-
lyses utilized in systems-wide approaches to identify connections
or correlations that are not biologically meaningful. Hence these
kinds of results should be interpreted with caution and not be used
for conclusions until they are corroborated via independent
means.

This requirement of validating conclusions made from systems
biology approaches with smaller-scale molecular biology
approaches brings to light an additional consideration for any
plant systems biologist. It would be extremely useful and perhaps
necessary for the plant samples (tissue, extracts, etc.) used in large-
scale analyses to be archived so that additional experiments could
be performed in future investigations. These experiments might
include studies to validate conclusions or even new methods of
phenotyping that could be applied and combined with other data
obtained using the same tissue sample. While there is a good deal
of anecdotal evidence about the ‘‘lab effect’’ in high-throughput
biology, we are not aware of any studies that have systematically
analyzed how easy it is to replicate a particular expression profile in
different labs, at different times. However, at some point in the
near future, the ability to do this will be critical since the true
power of a systems biology approach is that individually, a parti-
cular measurement is low in information content, but when
coupled with many other measurements from labs around the
world, it can provide the foundation of an encyclopedia that
describes precisely how the transcriptome, proteome, and meta-
bolome all work together in the plant.
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In this chapter we have sought to provide the reader with a
glimpse of the promise and challenges in genomic profiling tools
used for systems biology analysis in plants. It is clear that technol-
ogies are continually changing, and these often result in less
expensive methods with faster data streams. Although methods
of genome-wide mRNA measurements are fairly well established,
the remaining challenge is to accelerate proteomic and metabolo-
mic measurements to improve sample throughput and data com-
prehensiveness. Systematic integration of RNA and DNA
measurements with changes that are occurring in proteins, small
molecules, and growth will be a further step in understanding
cellular dynamics and biochemical regulation. Finally, progress in
systems biology will be greatly facilitated by the creation of a tissue
archive, so that scientists will not have to re-grow plants each time
a new systems biology technique is developed. One can only hope
that the students and postdoctoral associates that we are training
now will not only have enough insight to devise the right experi-
ments but also have enough foresight to plan ahead so that each
generation of biologists will not have to rediscover the wheel.
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